AD=A108 763  WORCESTER POL"!C'NXC INST MASS DEPY OF ELECYR!CAL E==€TC F/6 9/8

COMPUTER MODELS FOR CONDUCTING SURFACES, (U)
AUS 81 J SINGH FSMO!—'I’-C-O”! .
uucussx 1£0 RADC=TR=81-228




N
©
N
(3,1

T TR
B

I

-
[
=
(5]
|
= —
N N
N

fl2

w
o

i

=2

e s
22 Wt mee

MICROCOPY RESOLUTION TEST CHART
PANLARD e A

NATICNAL BUREAD 04 - o



N

Final Technical Report
August 1981

COMPUTER MODELS FOR
CONDUCTING SURFACES

Worcester Polytechnic Institute

WATIS8763

Jitendra Singh

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Al .
. e
» . -

STIVAYNS ONILONANOD ¥O0d STHAOW YALNAWOD

DTIC

CRYELECTEF
&) DEC221981 !

J

ROME AIR DEVELOPMENT CENTER A

% Air Force Systems Command
Lt

e el e o R I

Griffiss Air Force Base, New York 1344|

i._l !

/ 04

ot ‘-\;1";,." “‘1"?”_?’*\‘ ot .

A




T T

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationmns.

RADC-TR~81-222 has been reviewed and is approved for publication.

KENNETH R. SIARKIEWICZ
Project Engineer

N—

DAVID C. LUKE, Colonel, USAF
Chief, Reliability and Compatibility Division

FOR THE COMMANDER: 7 Xéa..q,

JOHN P, HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organizatiom,
please notify RADC. (RBCT) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

M astie

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T REPORT NUMBER 2..GOVT ACCESSION NO.
RADC-TR-81-222 o iS5

3. RECIPIENT'S CATALOG NUMBER

V. %

4. TITLE (and Subtitfe)

COMPUTER MODELS FOR CONDUCTING SURFACES

S. TYPE OF REPORT & PERIOO COVERED
Final Technical Report

Sep 79 - Sep 80

6. PERFORMING OG. REPORT NUMBER

N/A

7. AUTHOR(®)

Jitendra Singh

6. CONTRACT OR GRANT NUMBER(s)

F30602~-79-C-0091

9. PERFORMING ORGANIZATION NAME AND ADORESS
Worcester Poltechnic Institute
Electrical Engineering Department
Worcester MA 01609

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

62702F
23380324

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE

August 1981

Rome Air Development Center (RBCT)
Griffiss AFB NY 13441

13. NUMBER OF PAGES ] _/

172

14. MONITORING AGENCY NAME & ADDRESS(I/ different from Controlling Otfice)

Same

15. SECURITY CL ASS. (of thte-veport)

UNCLASSIFIED

1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

Same

17. QISTRIBUTION STATEMENT (of the sbatract entered in Block 20, if different from Report)

18, SUPPLEMENTARY NOTES

RADC Project Engineer: Kenneth R. Siarkiewicz

(RBCT)

19. XEY WORDS (Continue on reverse side if necessary and identify by block number)
Method of Moments

Mutual Impedance
Antenna Analysis
iElectric Field Integral Equation (EFIE)

. ABSTRACT (Continue on reverse side If necessary and identify by block number)
Under this effort work has been done to derive
expressions for generalized impedance parameter
conducting patches in free space.
between two wires, a wire and a patch and two p
developed. Basis functions sinusoidal in the d
and triangular in the transverse direction have

and use closed form
s involving rectangular,

A Galerkin model for the interaction

atches has been
irection of the current
been used. Farrar's

Integration technique has been used so as to give most of the results of

DD | 38" 1473

€DITION OF ' NOV 68 1S OBSOLETE UNC

LASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




UNCLASSIFIED

}(;um?v CLASSIFICATION OF THIS PAGE(When Date Entered)

A

the model in closed form.

\

SECURITY CLASSIFICATION OF Tu'® DAGEWhen Data Entered)

A UNCLASSIFIED
|

t

}

-~




o

& WA

it ) il " (‘747.77 § O i sl s i e it b b BRI S  aas i

ABSTRACT

Under this effort work has been done to derive and use
closed form expressions for generalized impedance parameters
involving rectangular, conducting patches in free space.*

A Galerkin model for the interaction between two wires, a wire
and a patch and two patches has been developed. Basis functions
sinusoidal in the direction of the current and triangular in

the transverse direction have been used. Farrar's Integration
technique has been used so as to give most of the results of

the model in closed form.

The original proposal called for the patches to be parallel.
This restriction has not been applied and the formulation is
general with respect to the relative orientations of the trans-
mitter subsection and the receiver subsection.
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CHAPTER 1: FORMULATION OF THE PROBLEM

1.0 Introduction

The treatment of conducting surfaces using the method of
moments has been a complex problem. Wire grid models have been
used with some success and are currently available in the GEMACS
system (Balestri et. al. (1977)), among others. Wire gridding
gives good results for far field problems and scattering problems.
If impedance, currents or near fields are required, or if the surface
contains slots comparable to the size of the grid, the results from
wire gridding are poor. Wire grid models have been criticized
because of questions of their validity;(see, for example, Lee et.
al, 1976). Surface current models have been developed by Knepp
and Goldhirsh (1972)., Albertson et. al. (1974), Wang (1974),
Wilton et. al. (1976), and Singh (1977a). Both Knepp and Albert-
son et. al. use the magnetic field formulation with pulse basis
functions and point matching. Wilton, et. al. use the electric
field integral equation with pulse basis functions and point
matching.

Wang uses the electric field formulation. His expansion
functions are sinusoidal in the direction of the current and uniform
in the transverse direction. The ‘'same applies to his testing
functions. The details of his impedance calculation are not
given. |

Singh has treated surface patches where both basis and testing

functions are sinusoidal in the direction of the current as well as




in the transverse direction. In addition, non-rectangular shapes

of basis function patches are permitted.

The limiting factor in all techniques mentioned above is the
large amount of CPU time required to numerically perform up to four
integrations for each matrix element and to solve the resulting
matrix equations. It is to be noted that if % wavelengths is some
average linear dimension of a surface and if v basis functions per
wavelength are to be used, the core required for the matrix is of
the order of (2v)4. The CPU time required to fill such a matrix

is also of the order of (2\))4 and the CPU time required to solve

the equations is of the order of (Qv)e. Such high order dependence
may result in CPU times of the order of several hours for problems
of moderate size (about 2 or 3 wavelengths square).

Recently, a new integration technique due to Farrar (1978)

et. al. has been published. This technique has been used to perform

some of the integrations in closed form and thereby reduce comput-

ation times drastically.

The problem has been formulated in the next three subsections.

B Lt A b

Subsection 1.4 is devoted to defining the notation for the coord-

inate system to be used in the model which is developed in

Chapter 2.



1.1 Basis Functions for Wires

(sin k(2 + 21)

sin kfl
sin k(l2 - )

40 = 1w

-

where

is given by

L¢.(I.u
i 1—&1

direction for wire segment i.

s Consider a wire subsection i extending from £ = -2 to £ = +L_. The

1 2

;. {current) basis function ¢i(l) is given in terms of 21 and L, as

2

0<t<t, (1.1.1)

elsewhere

k = %E is the wave number.

Lengths 21’ 22 are either equal or one of them is zero. Basis functions
¢;(2) are pictorially depicted in figure 1.1.1.

Figure 1.1.2 shows a wire divided into several basis functions. The
presence of a half sinusoid at the end, if that end forms a junction, may be
noted. The half sinusoid implies the presence of a point charge at the end.
The expressions in the next sections take this point charge into account.

$(R) is dimensionless. The current on the wire segments in the configuration

where Ii is the current on wire segment i, u, is the unit vector in the 2
i

e b m e
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Figure 1.1.1 Basis functions for wires
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(2) Ti boeth ends oo open
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(r) Yf the start end is at & junction

(c) If the findsh end is at a juuction

1V VYVl

(d) Jf both cnds arc at junctions

Figure 1.1.2 Division of a wire into basis functions.
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1.2 Basis Functions for Surfaces

X . . . . .
Consider a surface subsection i carrying current in the u direction and
extending y = -13 to 24 and z = -21 to 22. The current density basis function

for gi(y,z) is given in terms of 21, 22, 23 and 24 as q;.l(y)tbi(Z)\_J__z where

F23+y
_ - . < y <0
23 e -
2,4-)'
wl(y) = 4——27_.. 0 < yi24 (12.1)
! 0 elsewhere
i

Lengths 2; and 24 are either equal or one of them is zero. It is to be
noted that the (x,y,z) coordinate system is local to the surface subsection
under consideration and is defined in such a way as to have the current in the
subsection flowing in the z direction. An overlapping subsection carrying
current in the orthogonal direction is a part of the set of basis functions.
Thus the method of moments solution may be expected to contain current density
components in any direction.

Depending upon the values of ll, 22, 13 and 24, nine different types of
3 basis functions are possible. These and their two dimensional representations

are shown in figure 1.2.1. Figure 1.2.2 shows the complete set of basis
functions for a surface ABCD whose edges AC and CD are connected to other planes.

The current density on the surface segments in the configuration is given by

*In this report, the term "surface patch" implies a surface expansion function
) and not a physical section of the surface. It is assumed that a local coord-
ate system has been arranged so as to. have the patch in the yz plane, the
z direction being the direction of the current.
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)ilg_i = f Wi(y)¢i(z)JiBzi 1.2.2)

where Ji is the contribution of the current density basis function
wi(Y)¢i(ZIEi to the total current distribution. All Ji are unknowns in the
i

problem and have units of amps m-l. wi and ¢, are dimensionless functions.




P [USRISORP O B

1-10

1.3 Method of Moments Formulation

The geometry of the problem under consideration may involve wires and
surfaces. The unknown in the case of wires is current whereas the unknown
in the case of surfaces is current density. The method of moments yields the

following system of linear equations:

"11 [ (V")

(2" 1255 ] | (vS)

1z 1z

. (1.3.1)

) The superscripts W or S indicate whether the submatrices in question

’ pertain to wires or surfaces. Furthermore,

.
Vi - [E_(l).y_li o, (2148 (1.3.2)
and :
: v; =/f§_(y,z).gzi 0, (2)¥; (v)dzdy (1.3.3)
s

where E{(.) is the incident electric field. It is to be noted that Vi

has units of volt-m. It may be noted also that whereas wa has units of ohms,

b | 2" ana 25 have units of ohm-m and Z°> has units of ohm-mz. The mutual impe-
1
! dance Z?? between two wire segments (at y'=0 and at n=0) shown in figure 1.3.1

g is given by

'3
2 2
WW - ' '
Z3s =f_2 93 (Dy, - /Q'G(O,;;O,z ). 05(z")y,, dz'dr .
1 -

1.3.4
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-1
Y=t3
wire at given value of y'.
X
c
e b ‘;
i
' Figure 1.3.1: The physical arrangement for computing mutual 5
! . Note that x,y,z and x,n,; are local
L"‘ coordinate systems. The global coorg:l.nat-a systems
L is a,b,c.
u

N = e
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Here, G(0,z:;0,2') is the free space dyadic Green's function and

. -2 . .
has units of ohm-m “. The mutual impedance Z?? between a wire and

a surface is given by

L, 24 2!
WS_ [ * ' T ot \
zij-j_l 0@ [ w0 [ T0,eyt2 05y, detdy'
1 3 1
(1.3.5)
Similarly,
2 £ [y
25W =[ 4y m f 2 . @u,. [ % Gnzi0,2').0.(2")u. dz'dean
1] L 1 ¢ 1 - Q,' 3 -z
3 1 1
(1.3.6)

and finally,

3 3 'y
ss _["4 2 4 2 _ .
233 j/ “’i(”)f ¢35y, 'f ‘Pj(y')f EURTIANAE
'} = e t s

%
1
3 4

. 1] 1 L} n
¢J(z )gz.dz dy'dtd 3
In the above equations, the element i has been used as the

receptor element and j has been assumed to be the source element.
Because of the symmetry of the equations, this choice is arbitrary.

In the next chapter, techniques for evaluating the impedance gquant-

ities are studied.

A B PR E o aie




1.4 A Notation for the Coordinate Systems

Figure 1.3.1 shows a receiver and a transmitter for which
the impedance model is to be developed.

In general, the coordinates and distances from a point
(0,y',2') on the (x,y,z) syat=m to a point (0,n,Z) on the
(x,n,z) system are of intrrest. Of interest also are some of
these values when one or iwore elements of the set <yfn,c> are
zero. A three subscrirt notation is used, each subscript being a 0
or a l. If a subscript is 0, the corresponding variable in the set
<yfn,c> is 0. If the subscript is 1, the corresponding variable

in the set is present. Thus, r is the distance between (0,0,2')

000
on the (x,y,z) system and (0,0,0) on the (x,n,f) system. Simil-

arly, r is the distance between (0,0,z') on the (x,y,z) system

011
and (0,n,z) on the (x,n,;) system. This notation is extended to
allow the value (-1) for the subscripts. Under this extension,

r01(_1) is the distance between (0,0,z') on the(x,y,2) system

and (0,n, =-z) on the (x,n,tz) system. Thus, when the subscript is

L]
-1, the corresponding variable in the set <y ,n,f> is negated.

The distance from (0,y',z') to (0,n,z) is given by the vector




!
‘,

= = '
ri1 = (%p110 Y1110 Z111) S Egoo * By Y' ot ugn oyt

where (1.4.1)
Eyl = (0, -1, 0),
v, = (axn, yn’ azn)
and uc (axc’ ayc, z;) (1.4.2)

In the above equation, £000 is the vector from the point
(0,0,z') on the (x,y,z) system to the origin of the (x,n,z) coord-

a

inate system. a__, R , a are the directional

a a
Xy ye xn'"yn zn
cosines between the respective coordinate axes. Following the

a
2z’

properties of directional cosines,

+ + =1
8xg Yy T f2g ’ (1.4.3a)
2 2 2
+ + = 1.
a, tag *tag (1.4.3b)

Quite frequently, it is desired that some of the distances be expressed
as a quadratic trinomial in one of the variables. A notation for syst-
ematically doing so is presented here. The starting pcint under this

notation is always i1 which may be written as




2 ‘ 4 - 2
i1 (y*'/n,2) =R = (L +ur). (c

£110 7 B 110 ¥ 4.8)
2 2) 8 (g% 4 gE 2
(riyo + 2E)1p-8. *+ ) = (R + Ry £ + £9). (1.4.4a)

The arguments of r... may be omitted if they are the variables

y'.n and . The ¢ in equation l.4.4 is a superscript, not power.

Similarly,
2 L] L] , ' -
ti;; = ®RY + Ry v+ v'D ang (1.4.4D)
2 _ ..n . o.n 2 (1.4.4c)
fy11 = (Rp ¥ Ryn + n7)

Each of the coefficients of the quadratic trinomials Ri(') can
themselves be written as polynomials of degree (2-i) in other var-

iables. Thus, for example,

2 v ooy A RE = -
Fl1o (¥'enl A Ry = (Zygq * Upn)e (£1p0 + upm) =

2 2 Zn RGN 2
(f100 * (2Z10g-¥y) N+ 07 A Rgy + Royon+n

(1.4.5)

Table 1.4.1 shows all such expansions that have been used in

this report. They have been derived using a development similar to

1l.4.4a, above.

Whenever the ensuing text calls for a coefficient one of
whose subscripts is 2, the ccefficient is assumed to have the value
1. Whenever the sum of the subscripts is greater than 2, the value
of the coefficient is 0.

The vector 2111 = (xlll' Yii1° 0) is also of importance in the

calculations of impedance in cases where A # 1.
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= '
Elll Eooo + !yv Y +!nn + XCC (1.4.6)
where
zy| = (ol -1,0), Y_n = (axn' aynr O)I ZC = (axgl aYC' 0).
(1.4.7)

Expansions for p that are similar to those given above for rii1

are possible and are represented by

2

0 2 2 (1.4.8)
111

= _ 4 g .
= A = (A0 + Al; + %) vC

he expansions are similar to those for r except that none

111
of the coefficients of the trinomial is known apriori to be 1. It

is convenient to express the trinomial using the multiplier vz (as

has been done in equation 1.4.8), when expansions about r are involved.
It is more convenient to express it using three coefficients (as has

been done in the expansions for Ag in table 1.4.2) when expansions

about n or y' are involved. All expansions are listed in

table 1.4.2. It is noted that most expansions do not exist when
=0.
Iz

Finally, the quantities a and cos @

oL 111 are expressed as a

function of ¢ thus:

St % By * ¥pR) .Y,
¢ P g | (5 + A +gH
2 1, 1,2
Vi G A+ C)2 — - v ] G+ 3D .
z 4 4 [4 2
lycl(Ao + Mg+ o) (A% '+ A+ g2 (1.4.9)
= 2 -
cos (8,7,) = 111 = 8,5+ 3,0 (1.4.10
111 111

Tenbar e b PRt %o = Gl

.

T
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TABLE 1.4.1: Expansion of the Distance Parameters into Quadratic

Trinomials
Coefficient Expansion Interpretation
z g 2 2
R Rg + R{ T +¢ i1
Rg RSY' 4+ REY' v 4 02 r2
00 o1 Y Y 110
[}
; 4 zn zn 2 2
| Ro Rgo * Rgy n + 1 110
4 zy' Ly’ .
: Ry Riop * Ry v’ 210 Y i
a
S tn Ln .
Ry Rig * Ry 0 210 Y
- cy! gy'n zy'n 2 2
s | Roo Rgoo * Rgor M * M 010
K - ,
C ' cy’n zy'n .
. Rol Roio  * Roi1 " 2Zp10 Yy
_,
: zn Ny’ , qony' 2 2
Rgo Rooo * Rgor Y ' * V' 100
zn zny'’ gny'
; Ro1 Rgio * Ro1l ¥ 200 Y,
Ly’ zy'n zy'n
Rio R{0o *Rigy 1 2510 Y,
zy' zy'n
A Ri1 R'{o 2a,.,

T R e e R R s LR R
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TABLE 1.4.1 (continued):
Coefficient Expansion Interpretation
R%g Rigy + RigY v 2X100-Y;
S 4
. HAS X900
é Zy'n
Roo1 2X400-45
| Rg{é” 2Zg00 Yy
Ré{i” 2any'
‘;; RGoy. X000
1 e 2900 Yy
RGTY 25004
RSH' 230y
REY'N

100 2500 Y,
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TABLE 1.4.1 (continued): 1{
Coefficient Expansion Interpretation
Ly'n -
Rio1 2a, =0
zy'n
Ri1o 2a .,
cny' .
' R{o00 2500 ¢
‘ gny'
Rio1 2ay,C :
|
!
gny' - !
Rilo 2a,, =0 |
%
|
: ]
‘ E
!
. ;
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TABLE 1. 4.2:

Expansion of p in Quadratic Trinomials

Coefficient Expansion Interpretation
A vc2 (Ag + A‘i; + ;2) pill

¥ nGE 4 Sy v e agE v ";1)10/\/2

Ag Mgg * Hgin * Aggnz pilO/vg

Af MY afy e 20 10-Y/Y;
A Afg *+ AfIn 20 110-Yy/ Vs
1 A AR AR Po10”Ve

U ARt o e, Yyl
A Y %

ASo AGos * Mool vt "100/"

ASD AGDY' o pBnY y' 2p Y W2
ol 010 011 £ 100°'—m" "¢
i AR a4




Table 1.4.2 (continued):

Coefficient Expansion Interpretation
R3S ASY'n L aty'n 21 d
10 100 ¥ Aor ™
2
ACY' A'Yy'ﬂ zyy".\_fclvc
g 110
gn ABRY' o pSnY" 2100/ V,
Ao 100 * Mol ¥
Ln zny’ 2 _
Aiy Ai1o 2.y /v (= 0)
zy'n 2 2
Agoo P2 00’ Vs
Ly'n 2
Ago1 22000 'Y/ V7
zy'n 2,2
Ago2 v/ Ve
Zy'n 2
ho1o 000" Yy 1/ V2
zy'n 2
Ao11 23 Y/
Zy'n 2 ,.2
A020 vy./vC
cny! 2 2
Asoo Po00” Vg




———— -

TABLE 1.4.2 (Continued):

Coefficient Expansion Interpretation
A(C)BY 25006!)"/\'2[;
Agggl Vy?/vg
34 2000 %, /"
Ag;{. 22y.-zn/v§
Agg%' vﬁ/vi
Aig;’n . 2000 Y/ "i
Aigin 2Xn-gc/v§
Ail(')n 2Xy- -!C/Vg

' 2
Aigg Zegoot /Y,
Aiggl Zgy.-gc/vg
Ai?%' 2!n~yc/v3‘
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CHAPTER 2. CLOSED FORM SOLUTIONS FOR IMPEDANCES

2.1 Coupling Between Two Surface Segments

The mutual impedance between two surface segments i and j is

given by (see equation 1.3.7)

2

s[4 L2 %4 2
Z . =/ w-(n)dnf $.(z)u,. d;/ v, (y')dy' f G(n,g;y',2').
Pyt -y T -y -4

¢j(z‘)gz.dz' (2.1.1)
To calculate this mutual impedance we first consider the mutual

impedance between the surface segment i and a wire on segment ) at a

given value of y'. This mutual impedance is given by
L}

%4 %) %2
SW =
Zi-(y") =f v, (n)dn/ 9. (Z)u ,dg G(n,z;y',2z').¢.(2")u_,dz'
] -9 1 - 1 —C. -2 J z
3 1 1
(2.1.2)
From 2.1.1 and 2.1.2 it is easy to see that
%4
SSs SW
275 = . 'Yzt ‘)dy'. 2.1.3
ij _/i vyly')zZ;g(ytidy ( )
_13
Similarly,
L
4 WS
2SS =-/' b3 (N)Z33 (n)dn (2.1.4)
1]
-£3

where Z??(n) is the mutual impedance between a wire on surface

segment i at a given value of n and the surface segment j. Equa-

SSs S

tions 2.1.3 and 2.1.4 portray the hierarchy between Z""and Zw

SW

and 2 in that the integration of the latter with respect to one




! 2-2

of the coordinates gives the former. Thus, finding Zwsor ZSw is

a step towards finding ZSS. The computation of ZWS and st is

treated in the next section. The problem of evaluating ZSS using

equation 2.1.4 is revisited in Section 2.5 following the computation

WS SW

of 2 and 2 in Section 2.4.

T e s L TN, s td



2.2 Coupling Between Wire and Surface Segments

Using arguments similar to those used in Section 2.1, it is

easily seen that
L

4
SW _ ‘/. V. () WW
zij = -, i Zij(n)dn (2.2.1)

where Z??(n) is the mutual impedance between a wire on segment i
SW

at n and the wire j. Zij(y') defined in equation 2.1.2 is given
by
F4
255y = f_g b (m 25 (n,y")an (2.2.2)
where Z?? (n,y") isvghe mutual impedance between a wire on segment i

at n and a wire on segment j at y'.

Similarly,

!
WS WW
2,5 = (y')al i (y! ', 2.2.3
5 f_l' v vtz ytiay (2.2.3a)
Ws X WW
o = (y*)z..(y"*, . .2.3b
le(n) f. wj(y )le(y n)dy (2.2.3b)

'
23




T
‘

Equations 2.2.3 and 2.2.2 portray the hierarchy between WS

SW and ZWW, in the sense that integration of the latter with

respect to y' or n gives Zws or ZSw respectively. Thus, finding

wa is a step towards finding Zws or st. The computation of wa

is treated in the next section. The problem of evaluating Zws or

zsw from wa is revisited in section 2.4.

and 2




T

2.3 Wire-to-¥Wire Coupling

Equations 1.3.4 through 1.3.7 contain the term

N
2 -—
F{(l)/IJ = E: . ‘/-\‘ G((.),(.;(.),z').Gj(Z')gz.dz' 2.3.1

— -

as their innermost integral. This cuantity is the ¢ directed
component of the electric field at (0,n,:) due to a unit current
on subsection j and has units of volts m-1 amp'l. The result of
the integration is a vector whose dot product with u. gives
Ea(i)/Ij' 2 closed form solution has been derived by Schelkunoff

and Friis (1952) and restated in convenient terms by Singh* (1977).

is given by

When I, is 1, E_
RAY/
F“~',(i)("‘) = - . tag k4 ap,E“ 2.3.2?
where
1 »~Jkryyq
V') = - pm— X B R R
uh ' U ¢ r
V'=—v1,0,¢2 111
2.3.3)
' ' “ikry g
E (v..) = =32— 2 N RN CAD N GRS 3 S S SR
z 41 un ' ' Nzt rlll

v'=«vl,0,92 ¢t

*Pages 40-42.

Eags . L S s
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and
E (,..) = —%_ (...) & [6(z') Jexp(-3kr, ;)
0 4nwep 2.=_2; ,0,8" 2 111
N P s [0z -5
drwce oc) 2'=§ Vo gr g [ 3z7 | 08811, exp(-jkry,,)
(2.3.5)
where
8 () = (.) - (.) (2.3.6)
[ L'+0 L'-0
. W pe s ,
Since Zij is independent of Ij’ it is computed using
Iy=1 and is given by
P
2™ (yr,n) = ¢; (G)E (y',n,c) dc (2.3.7)
lJ ’ 1 C(i) ’ ’ . .
—21

Since the arguments of the functions wa(..), ¢(.) and
E;(...) provide the context for the subscripts i and j, these

subscripts are drooped in the ensuing discussion.

Substituting 2.3.3, 2.3.4, and 2.3.5 into 2.3.2 and then

substituting 2.3.2 into 2.3.7, the following equation is obtained:

WW 4 WW WW
27 (y',n) = z I b 2y (2',y'/m) (2.3.8)
nh-zl',o,zz' t=

1 t



where

and where

wWW
2y

drwe

(l',y',n)

(2'.y',n)

(2',y',n)

(2',y',n)

A [3¢(2')]
2..

2-17

z#%; i' [6(2")]);
4rwe a [88;? )];
L' ]

- _k .
" 4nwe ﬁ. (e (z") 15

2z

¢ ()

2z

3

X4

¢ (z)

¢ (g)

$(Z)

exp(-3kr ;)

dg

F111
exp(-jkrlll) g
z

111
exp(—jkrlll) q
14

111

cosb 4, exp(-3jkr;q,)

111

dg

(2.3.9a)

(2.3.9b)

(2.3.9c)

(2.3.94)

(2.3.10a)

(2.3.10b)

(2.3.10¢)

(2.3.10d)




In the above equations, wa is the contribution of the

1
current discontinuity on the source wire. Zgw is the contribution
of the 2z directed field generated by the source wire. This
contribution is zero when the two wires are orthogonal to each
other. Zgw is the contribution of the p directed field
generated by the source wire segment when it has a current
discontinuity at one end. The contribution of Zgw is zero
whenever the two wire segments are parallel or when the source
segment has no current discontinuities on it. Zﬂw is the
contribution of the ¢ directed field generated by the

source wire. This contribution is zero when the two wires are

parallel.

Theorem 2.3.1

Each of the component impedances Zl through Z4 can be

written as linear combinations of the impedance gquantity

Zgw (¢',y'.n,v,5,a) where

v o

L2 4 4
(vevned) = J o(c) (g +AT +22)  ooor

WwW .
Z0 111 exp(-ikr llf dzg

(2.3.11)




Proof

The proof constitutes finding the linear combinations of

Zgw( ...... ) that give the component impedance in question.
W 2 exp(-jkr;,,)
2,7 () = J 0(2) 37 r dg
111
_9'1

2,
2 . Z -3 :
- I o (r) (1 +3kry ) (3R] +1¢) r]]; exp(-jkry;;) dg

1 1 ¢ (l-h WW
=- £ (3k)9 (575 ) z (...0,h,g-3) (2.3.12a)

g=0 h=0 0
WW i WW _
z2 (o) =a, 25" (...0,0,-1) (2.3.12b)

4

WH b2 (50 4 0) ( )
z, (...) = J ¢ (z) exp(-jkr dc
3 (% +alt+c) 111

_21

1 4
=t (50 ) 2™ (...(-2),h,0) (2.3.12¢)
= 0
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W L, (% Acl +c) (2110 +az;c) _
Z4 (...) = J 4 T ) ¢(C)""—_j?_—‘___" exp(—Jkrlll) dar
0 (Ag +AjT +12?) 111
11 1-g ¢ _1-h
g Wi
= £ T (2y14) (547 ) a Zn (...(=2),(g+h),-1)
g=0 h=0 110 r44 0

(2.3.124)

! End of Proof

: The use of theorem 2.3.1 suggests figure 2.3.1 as a flowchart

of a procedure to calculate wa. Note that each of the 4 blocks on

' the right hand side calls for Zgw.

0
this solution, it is assumed that

4 - A closed form solution for wa is developed next. In developing

a. (3t (2.3.13)

where x is less thaw n/2. According to Abramowitz and Stegur *.

this approximation will result in less than .09 percent error.
More terms may be included for greater accuracy. However, the
errors developed during solving the method of moments equations

are likely to undo any votential benefits of grcater accuracy.

*Page 76:
ag =1 a; = 1 a, =,49670 a,y = .16605 a, =,03705 ag = .00761




The above integration range is divided into the (-%; to 0)

and (0 to 2;) ranges. 1In the first, a change of variables from

£ to -t gives

2 0 sin(k(2,-¢}) kv
WW _1:0S g 4 _119,¢E 2y
Zy (eeeess) -051( 1) J STR(RED) (AG +(-1)7A7] +z2)
N 0
s .
X C (rll(_l)c)“ exp(-jk rll(—l)c) dg (2.3.14)
2 (-1)°% exp(-jkr ..) (‘o kv
_ 110 4 _110 % 2 S _a
= T2 sintky) I (A +-D7AL o+ e2) o7 ryy e

0

X [exp[ jk (EU -~ rll (-l)c +rll°‘)]-exp {Jk (-10 +z- rll('l)""‘"]]&) J d;

(2.3.15)

The argument of the exponent is less than L, in the domain

of integration. Application of equation 2.3.13 gives

e & R sttt A s At T LY
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2-1la

Calculate
distances, currents,
current slope,

relative orienta-
tion of the wires

Current
dlscontlnglty ves Calculate z,
on the wire?
(egn 2.3.10a)
t
!
Current
lope continuous No Calculate 2z,

or
perpendicular
wires

(eqn 2.3.10b)

Yes

Current
discontinuity
or
non-parallel
wires

Calculate 2
Yes 3

(eqn 2.3.10¢)

Current
slope continuous
or
arallel wire

No Calculate Z4

(egqn 2.3.10d)

equation 2.3.8

! Figure 2.3.1: A Procedure for Calculating
4 zWW,

L FEE - .
EENEE R " S R T TR R e ek L L L




as .
W 2 m1)77 expl-3kryy4) 5 i
zo( ...... ) = & CEWS I a, (ik)
o=1 3 sin klo j=0 1
2'0
x [ 0f +(-1° 2T ocee) S F11(-1)°

. c i
x | (2g =8 =ty +rp0)t- (-4, v -T11(-1) +r110) J s

{(2.3.16)

which by repeated use of the binomial theorem gives

W 2 (-1)°% exp(-jkryig) 5 g i m im i) Yﬂ[iﬂn
Z, (eeeeea)®= I —— £ aj;(jk) r r z m| (nj| p
o o=1 2] sin kig i=0 © =0 n=0 p=0

x (1" [1 - (-1)“"*"] e P P j (05 + D a5 g+e)®

a m-n 0 2.3.17
rll(-l)a z rll(_l)c dzg (2.3 )

The quantity inside the integral is normalized (i.e., the inte-

gration limits are made to be 0 and 1) by writing

- : = [rE 110 gk 21 % .
¢ = %5 % and noting that 1y, ,° (R§ +(-1)°R] z+c?)7 to give

- . s - e

I

” S e v A PR E o YR - s BYE e
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. +1 kv
2 - & (-1)7% exp(-3kry o) £ (o)
o foeeene) = L SEITYIE

a
T110

5 A | m i-m . .
x I a; (jktg)' & I > [1] [m] {i‘m) (-n™ {1-;1)1+“*P)
=0 m=0 n=0 p=0 n P

r n+p
110
X { ] zA2v(s+m-n)(n+a) (a1, [r])

2
o
(2.3.18)
where the elements A; of the vector [2) and R; of the vector (Rr]
are given, for 0<isg2, by
_ 1 _119 i,z . . § 119, Y 2
M= (‘ L "o) T B (‘ b 20) Ry (2.3.19)
and where
1
= kN P %0
Zaawp ((4)[RD = ./; (A(x))*7 x = (R(x)) " dx (2.3.20)
where
A 2 A 2 -
Ax)= Ay + A1 x + AX" 3 R(X)Z Ry + R, x + Ryx". When N=0,

ZA2 reduces to the simpler

1
%a1pg ([R]) = fo £ (R(x)) "2 ax. (2.3.21)




Techniques for evaluating ZAlPQ in closed form are detailed in

Appendix Al, techniques for evaluating 2 are detailed in

A2NPQ
Appendix A2.

A few comments regarding terminology are in order: The unsuper-
scripted A; and R., being elements of the vectors [A) and [R] are
distinct from the superscripted variables defined in Section 1.4
(some of the unsuperscripted Ai and Ri are related to the superscripted
variables of Section 1.4 by equations 2.3.19). Furthermore, the
symbols [A] and (R], being aggregates of the quantities related
with, respectively, the two dimensional distance () and the three
dimensional distance (r) between the receiver and the transmitter,
are vectors when the wire-to-wire interaction is under investigation.
These symbols represent two dimensional matrices when wire-to-
surface and surface-to-wire interactions are considered and three
dimensional matrices when surface-to-surface interactions are
considered.

In summary, the mutual impedance between two wire segments
with sinusoidal basis functions is composed of four impedance
quantities (equation 2.3.8) each of which can be written as linear

combinations of the impedance quantity Zgw

(theorem 2.3.1,

: . _ . S WW .
equations 2.3.12). The impedance quantity Z, can, in turn,
be written as a linear combination of the quantity ZAZNPQ for

various values of N, P and Q (equation 2.3.18). Whercas techniques

for evaluating A

A2NPQ are examined in Appendix A2, it 1s noted here

. PRI o n, B Ly v s




that 2 is a dimensionless quantity. Therefore, (from equat-

A2NPQ

ion 2.3.18), Zgwhas dimensions of (length) s+v+a+l

which is
dimensionally consistent with equations 2.3.8 and 2.3.12. Further

details regarding the computation of wire-to-wire impedance are

treated in Appendix D.




Coupling Between a Wire Segment and a Surface Segment

Revisited

From section 2.2,

24
S (n) = vz e ay, (2.4.1a)
—13
2y
st(y') = I \v(n)zww(n,y') dn (2.4.1b)

Replacing the dummy variable y' or n by -y' or -n 1in
the negative part of the integration domain,
4
WS
z2 7 (n) = bX

L' -y
I == ™ ((-1)Ty',n) ay (2.4.2a)
0

and

Z (Y',(-l)En) dn (2.4.2b)

Using the substitutions y'==2; y and n =1£y respectively,

the above equations may be rewritten as

1
WS 4 L e ' e WW T
2o(n) = & r (-7 g Iy 27 ((-1) z;y,n) dy (2.4.3a)
=3 e=0
0

and

et N T RGNy w )




1

1
t (-1 I yE 2™ (yr, (-1 2Ey) dy (2.4.3b)
E=3 £=0 & 0

o1 b

st(y') =

Here the variable y is a dummy variable of integration and

is unrelated to the y wused in the coordinate systems.

Equation 2.3.8 can be substituted into equations 2.4.3 to

give
4 1 4
=1 & (-1 L DB P (1, -1, n)
1=3 e=0 Togt=—=2y ,0,¢, t=1
(2.4.4a)
and
4 1l 4
zsw(y') =1 @ (-1fq z b o‘:w zi‘g (2',y',(-l)gl€)
£=3 £=0 £ 2,':1'1,0,9!2 t=
(2.4.4b)
where
1
WS e WW
Zie (z'.n;,n) = J Y Z¢ (2'.z;y.n) dy (2.4.5a)
0
and
1
SW £ WW
2ee (210v'ee) = J yo 2g (2tey'er,y) dy (2.4.5b)

0

FOUTEN
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It is to be noted that equations 2.4.5 represent definitions

of the quantities zzz and Zi¥ and that the factors (-1)' and

(-1} of equations 2.4.4 are absorbed in the dummy variables 2;

and 25 for the purpose of this definition and the analysis that

follows.

Theorem 2.4.1la

Each of the component impedances ZYz through 222 can be

written as linear combinations of the imvedance quantity

WS
ZOe (R',Q;, n,v, s,a) where

1
WS e WW
Zga (evveee ) = [ Yy 2 (l',l;y,n,v,s,a) dy (2.4.6a)
)
Proof

The proof constitutes finding the linear combinations of

Zoe (ceveen ) that give the component impedance in question
WS 1 e Ww
-— L} L]
Zle(. .) —f y zy (2'.Rly, n) dy
0]
1 1-h
1 1
e . g 1 EY! 1 Cyl ]
= - y. I I (jk) [— R +3 R Lry
J g=0 h=0 2 10 2 11 T
0
WW
X Z, (.. 0, h, g-3lgy
1 1 _ y 1=h-h' ¢ h' 1
=- : ow? 3 G o @Y ®REY)T ey
g=0 h=0 '=0
t
WS
X Zo(e+nr) (o O/Rrg=d) (2.4.7aa)




WS _ WS
ZZe("') =a, 20 (...0, 0,-1) (2.4.7ab)
1 1-h -h-h' '
WS - &-&-h h !
Z3e(...) = I (-;—)1 b (AigB (ACy') (1')h g WS (...€2),
h=0 h'=0 11 T 0 (e+h') p,0)
1 (2o4.7ac)'
WS - 1 1-h -h-h' .
Z4e("') = I agz; zélg b T (%)l'h (ACY')l h-h (Agy'l;" (2 h
g=0 h=0 h'=0 10 11 1)
WS (...(-2) +h, -1 2.4
x ZO (e+h') ¢ gth, ) ( .7ad)
End of Proof
Theorem 2.4.1b
. Sw SW
Each of the component impedances zlf through Z4f can
be written as linear combinations of the impedance quantity
25w (¢',y',% ,v,s,a) where
of £
1
SW f _Ww
Zof('°"") = I y zo (1',y'1€y,v,s,u) dy (2.4.6Db)
0
Proof

The proof constitutes finding the linear combinations of
Sw . . . R .
Zof(......) that give the component impedance in question. Similar

to equations 2.4.7a,




|
|

SW
b4 zO(f+h') {...0,h, g-3)

(2.4.7ba)
SW SW
sz(...) = a,, zof (...0,0,-1) (2.4.7bb)
1 1-h  1-h 1-h-h' h' he
SW _ 1 n n ()
Z22%(...) = ¢ (D) T (A=) (A=) (.) 2 vy (e (=2),h,0)
3f h=0 2 h'=o 10 11 (3 0(f+h')
(2.4.7bc)
1l 1l-g 1
SwW _ g ( -g-g' g' g' 1,1-h
2% ..y = & a I (zonof @19 («) e
4f g=0 Zy g'=0 000 Zn £ = 2
1h o l-neh zn.h' a’ SwW 5 L
niep 10" Wy G 20 (f+grant) (- (720 g4h, 1)
(2.4.7pq)
Equation 2.4.7bd is dissimilar from 2.4.7ad because Z110

is a function of n but not of y'. This is easily seen by writing,

from equations 1.4.1 and 1.4.2, that

“110 = %010 = %000 * zn"-

End of Proof




Closed form solutions for zgz are developed by substituting

equation 2.3.18 irto equaticn 2.4.6a.

1
W
Zoz (¢eeen ) = Iye Zgw (1.1 2_; Yr Ny v S, a) dy
0
2 ( 1)05 20 o+l 5 i
= I : T oa;{ix %)) X
o=1 23 sin kg j=¢ 1 o
i m i-m . .
EOTWE) (5) com a2,
i m=0 n=0 p=0 n p
, (2.4.8
where
I 1 kv r n+p
WS e a . 110
zOeO = I Y (Aé) rllo exp (-ik rllo) [ 2'0 ] X
0
Za2y (s+m-n) (n+a) (A1, [RD) dy (2.4.9)

For the solution of zgzo, the argument of the exponential

is first reduced to within n/2 by writing




TR —

%v r n+p
WS _ s ty' a 010
zo(_30 exp(-jk r010) [Aoo } Y10 {——-—-—zo } X
1 AL \AW r a+n+p
e 0 110 .
f o Acy'! {rOIO; exp{=3k (T 16 010
o 1 00

Za2v (s+m-n) (n+a) (A1, [R]) dy,

expanding the exponential in the approximate series and then

1
expanding the binomial (rgi1g -rjip) Vo give

Ly r n+p
WS _ _a zy' a 010
ZOeO = exp( ]kr010) (AOO } rp10 ! ] ) bl

T aj; (Fkro10) L { 1} (-1)

1 T yxv
[ e | to [r110]“+“+p+ml
o010

Za2v (s4m-n) (n+a) A1)

(2.4.10)

[R]) dy

(2.4.11)




The factor containing the integral is

1 AG £ R K i o LS T % (n+a)
I o |0 R J A) swen (R dx dy
% ey’ A 3
0 00 1Roo o Yo
1 Rg %(ptmp) 1 \ o . i ]  (rr+a)
- e — D e =
| { My (W) S *Y 2412
0 Roo o Lo z Ryo 4.
and thus can be written as Z (Eﬂvﬁﬂ)where the

i B2v(s+mrn)(n+a)e(pﬂnl)
elements Aij of the matrix [A] are given, for 0 < i,j < 2, by

; 1 fo i [ j Cy' . .
b XE;T [(-l) lo} (2¢) Aij i+3j <2
p . = Moo
ij
0 otherwise (2.4.13a)

and the elements R.. of the matrix [R] are given by

1]
r *
1 o 1 I Lzy' . .
— [('l) Lq (27)° R{Y i+3j <2
| !
Rij = 1
0 otherwise
(2.4.14a)

and where
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G 51
Zyonpgus ([41+[RD £ J v L Roj ¥ ]
0 h!
1
2 2 N b (2 2 .%Q
X J [ z I x A, yJ] x I LI X R yJ]
i=0 j=0 1] 1i=0 3=0 3
0
dx dy
(2.4.15)
For N = 0, ZBZNPQMS simplifies to
(a Lo 2 j!sslpzzi 5140
Z R]) J y I R y ] J X b I X R.,.Y ]
B1pPQMS [)=0 0j i=0 =0 ij
0 0
dx dy
(2.4.16)
The techniques for the calculation of ZBlPQMS and

ZBZNPQMS are detailed in Appendix B.l and B.2 respectively.

1




Combining 2,4.8 and 2.4.11,

(-1)°% L5+l
1 sin k Ro o]

WS

1 . zy'! kv
ZOe = 53 exp(°Jkr010) [Aoo ]

5 . 1 m i-m i m i-m
Ioay (Gxeg)t & x [m) [n} [ )(-1)m h-(-1)1+“+9]
i=0 m=0 n=0 p=0 P (
. . i i m
r n+p 5 i. r...i 1 1 1
20" ¢ e an™ (RO 3| e
o ij=0 “17 T t m=0 1

x ZBZv(s+m-n)(n+a)e(p+m1) ([Al,[R])
(2.4.17a)
i i, r i
The factor (jkrOlO)ll has been rewritten as (jk%/) 1 (quo) 1

. . . T .
in the above equation for two reasons: first, to make the expansion

in the y' direction appear to be symmetrical with the expansion in

the X direction by writing it in the form § a, (jke)' I a, (k¢ 11,
1

il 1

second to anticipate a result to be derived in Appendix D whereby

Gy (™ (™

__1yitntp
m n p 1 (1-(-1) )ZB

the partial sum [ by pX b}
m n P m

lg n+p ¢ i1
is found to be of the order (—<) (=1-) *, thus making all the
Yo10 Tolo

sums in the above expression relatively insensitive to geometry

where a large variation in (%) may be found.

2

;
|
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Similarly,

kv 2
sw _ 1 s ) a
Zog = 23 SxP(-3krigo) [Aoo} Ti00 I (-1

Do) DT Zgp i) ()£ i) ((AD/TRD)

(2.4.17b)

where the elements Aij and Rij of the matrices [A],[R] are given

for 0 = i,j b 2, bY

1 [ lo; ]i b Zn . :
— -1 ) AL i+ <
o LD (2. A{5 jzo2
A,, = 00
1)
0 otherwise
(2.4.13b)
1 |(-1y© J pin + <
e [( 1) EU] (25) Ry i+3<2
‘00
RlJ =
0 otherwise
(2.4.14b)
! I . t_v'..g,

=5 AT W PRy T L R et
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2.5 Coupling Between Two Surface Segments Revisited

From sections 2.1 and 2.4,

Ly
2SS _ f vin) 2% () an
e
3
1
4 1
= 1 1 (-nf t, J £ 2" ((-1® 1, z) dz.
£=3 £=0 0 (2.5.1)

The above equation has been derived similar to equation 2.4.3b.

The variable z = fL is a dummy variable of integration and

is unrelated to the z used in the coordinate system.

Equation 2.4.4a can be substituted into equation 2.5.1 to give

4 1

4 1
255 - ¢ ¢ (-nf . I (-D® e by
£=3 £=0 1=3 e=0 °==27,0,%;
4w ss T £
X ti] bE" Zgge (A7, (-LTer (-1D* 2] (2.5.2)
where
1
ss . _ £ WS (,. ,. :
ztef (e '“1'25) = J z 2y (2 "‘T"gZ) dz (2.5.3)




PT—

Theorem 2.5.1

zSS ss
lef def

written as linear combinations of the impedance quantity
SSs

Zoeg (t7/nge®

Each of the component impedances through 2 can be

g,\), s,a) where

1

_ £ WS (.. ..
Zgag (eeeres ) = J z zgo (v ,QT,ng,v,S,a) dz (2.5.4)
0

Proof
The proof constitutes finding the linear combinations of

Zng that give the component impedance in question

l l l_h l’h ’ l—h—h' T n
58 __ 1 k9 1 v h' h 1-h-h~h
Tlee =" gl X7 pIo @ LI R G LRl &R (REYM)
h* -
(25) zgs_bﬂ'x')(f-{-h") (---O,h,g 3) (2.5.5a)
ss _ ss )
Zoog = 35, Zoag (++-0,0,-1) (2.5.5b)
- ¥ ' ] =h=h"' “hah ' " h" h"
o = : %ﬁh %hmﬁ:¢(ﬁﬁ lgh(@%%lhhh(@ﬁﬁ (2}
h=0 h'=0 h"=0
X Zote iy (£ (+oe (-2 /0,0) (2.5.5¢)
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1l 1-h - ' ' heh? hoh " . "
x I & i (A%Y "})l (2% 1 ? h (Acy'n)l h=h'-h A% P )h
h=0 2  n'=0 110 hieg 100 100 7 Mg
ss
X Zo(e+h|)(f+gl+hu) (...(-2), g+h,-1) (Z.S.Sd)

End of Proof

Closed form solution for Zng is developed by substituting

equation 2,4.17a into equation 2 5.4 to give

oS, S+l . .
ss 2 (-1) L 5 ) i i m i-m i
Zoef(......) = I Z_W b2 ai(szc) 1 L I (m)
o=1 <J g 1i=0 m=0 n=0 p=0

(':)[i;’“] 1™ (1- (-n iR i§=o ag (jk)ilmiio [;i] -1
x 255 ¢ (2.5.6)
%0a£0 = Ilzf ["33'1’“ Tolo O (.'jkrr)m) [r_g;—o]mp (”010)il
0
X Zg)u(ssm-n) (n+a)e(pemy) (A1 [R1ddz (2.5.7)

— e

e A Y 2T P e TV S TRV AT P R iy



——— e —

For the solution of zngo, the argument of the exponential is

first reduced to within % by writing

ss cy'n)%v ati [rooo]“ﬂ’

Zoego = ©xP(~3krpoo) [Aooo Yooo |Tt,

zy' B
1 A r a+n+p+ig
00 010 i -
* J 3 LTy krooo] exp[ Jk[1'010 rooo)}
0 000
2.5.8
X ZB2v(s+m~n)(n+a)e(p+m1) (11, [R))az ( )

and expanding the exponential in the approximate series and then
010

iz
] to give
000

expanding the binomial [1 -

kv a+i] (p n+p
ss - s gy'n 000
Zoero = x| 3‘“000)["000 ) 000 [ L )
3 i, i, i m
X I a, [jkr000 z 120 (-1
i,=0 2 m,=0 |m2
1 A;Y ' v . O‘.'H’H’p"'i 1 H
f 00 010 R
[ 2 zy'n [r } ZB2v (s+m-n) (n+a) e (pHmy) (IA1.(RT)az
0 AOOO 000

(2.5.9)

=TT e T
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The factor containing the integral is !
kv % (a+n+p+i;+m,)
1 ty' gy
£ | Ao Roo
Acy‘n RSY ' 0
0 000 000
G
1 RC p‘.m.) 1 ;i\) !5(!5"'(!)
I Nl -0 {J\—] xSim-n | R dx dy dz \
rEY J UpRY &Y |
0 00 0 00 0 :
1 RCY' k(i;-my+m,) 1 . % (p+m,) ‘
- I £ 00 J v© 0
RSY' 0 Rcyin
0 Q00 0 000
1 Ly %(na)
I -—".-,J xStmn |_R__ dx dy dz (2.5.10)
ALY R;Y n
0 000 Q00

and thus can be written as j

ZC2v(s+m-n)(n+a)e(p+m1)f(il-m1+m2) ([a1,(r1)

where the elements Aijk of the three dimensional matrix {[A]

are given by




= —  (-D° 2 ) (2)? (1) A3 if 4454k <2

A5k Ly ijk
000
= 0, otherwise (2.5.11)
the elements of Rijk of the three dimensional matrix [R] are
given by
R,. = — o i 5 k _zy'n
P = — _ ' . . .
ijk RSY (0% ) (227 (v)) RiY," if i+j+k <2
=0 otherwise (2.5.12)
and where
1 H 1l
G (2 kY (. m[2 2 k)%
z AL, [R =J z [z R ] J {z I R... yi2
canpousen (LM [RD) Koo 00K® Y {3=0 k=0 03k Y%
0 0
o2 o2, L5 o\ pr2 2 2 P50
xJ {z oz /\i.kxyJ ) x{z I I R xylz
i=0 j=0 k=0 J i=0 j=0 k=0 *J J
dx dy dz (2.5.13)

Techniques for the computation of 2 are treated in

C2NPQMSGH

Appendix C.2. Techniques for the computation of ([R]),

ZClPQMSGH
being a special case of the above for N=0, are treated in

Appendix C.1.
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APPENDIX A

YT Ty

CLOSED FORM SOLUTION OF SOME SINGLE INTEGRALS

3 A.1 The Solution for ZAlPQ

Closed form solution for the integral
1

. _ P 5Q

: Zp1pg ([R]) = ./; X" (R(x))** dx

where

_ 2
R(x) = RO + Rl X + sz

is derived here for various integer values of P and Q. In this

; derivation, it is known that P > 0, Ry = 1 and 4R, > Rl2.
i
For Q = 0,
o = 1
Zppo (R = 337 (A.1.1)

Za1po = Za1p@-2) t Ry Za1(p+di0-2) * R2 Za1(p+2) (0-2)

(A.1.2)

This equation is used as a recurrence relation for the cal-

culation of ZAlPQ for positive values of Q.




For negative values of Q, a recursion relation to reduce the

value of P is derived first:

Integrating by parts,

P+1 1 1
= X %0 - _9 P+l _%0-1
Zaipg ~ Pe1- R ] 2(p+1) Io X R (R} +2R, x) dx
0
R ka 1o ) Ry )
p+1 F o~ Z+D)  “al(p+1)(0-2) T TBFD)  “AL(P+2) (Q-2)

(A.1.3)

Subtracting A.l1.3 from A.l.2 and rearranging gives

1
p+1
9 _ X 50 ]
R, (l + p+1) Za1(p+2) (0-2) - p¥1_ R o
-1+ =S )R 2 -3
2+ ) R1%a1(p+1) (Q-2) ALP (Q-2) (A.1.4)

Changing all P to P-2, Q to Q+2, for P+Q+1#0,

1 (2P+Q) R

P—1R%Q+1 1
YA = L—_ ] - ——— YA -

AlPQ (P+Q+1)R2 0 (P+Q+1) 2R, "Al(P-1)Q

(P-1) z

(P+Q+1)R2 Al (P-2)Q (A.1.5)

If P =1, and Q # -2, this gives




e ———

A-3

Za110 T WO R.| T ZRD Zalo00 (A.1.6)

1
R%Q+l ] Ry
2 2

If P > 1 and Q# - (P+1l),

= 1 50+1 -
“alpg = TP+Q¥IIR, [‘R(l) (PH5Q)R) Za1(p-1)0 -

(P=1) ZAl(P-Z)Q] (A.1.7)

For P + Q + 1 = 0, equation A.l.3 rewritten as

= 1 - -
a1pQ T R, (ZAl(P-Z)(Q+2) Zarp-2)0 T R1 Zal(p-1)0
(A.1.8)
can be used recursively until P = 0 or 1. ZAlO(—l) and ZAll(—2)

are evaluated separately later in this Appendix.

Special Case

If R2 << 1 the recursive relationships derived above accum-

ulate errors. For that case, equation A.,l1.7 rewritten as

=1 B+l
2a1pQ = BFI (‘R(l)) (P+50+2) Ry Zp) (pe1)q

- (P+O+3)R, ZAl(P+2)Q) (A.1.9)
along with the approximation that for R2 << 1, large p
Zaipg * (BN (A.1.10)
P+1
is used for the evaluation of ZAlPQ for all P and Q.

End of Special Case

'l

P —_—— e
[P T ~—— @YW g A



The base values to be used for recursion relations A.l.5.
through A.1.8. are given in tables of integrals (Gradshteyn and

Ryzhik , 1965) and are reproduced here.

3 UR2+%R1)RJWI)--%RJ if A#0

Za10(-3)
i x il + R if A=0
TR, 78717
| 11 (A.1.11)
)
b where
|
' A =4R2-R12 (A.1.12) L
b
2R,+R R
2 1 ‘RtRy -1 Ry .
. tan - tan —_ if A>0
z 7B [ 7
A10(-2)
| R ,
" _ R 7R, if 4=0
3 (A.1.13)
R
= 1 11
Zall(-2) T 2R, R T 3RS Zano(-2) (A.1.14)

' Vi_i””*

e e NN TR s YL I A




1

Za10(-1) =

¥ _k 1
en RZR(1)+R2+2R
/R2 ¥, L
2 R2 + 5 R1
1

R, + 5 R

Rz-% in i 2 1
= R
21

if A #0

if A =0

(A.1.15)




A.2 The Solution for ZAZNPQ

The integral 2 is evaluated here given that

A2NPQ

N2>-2, P20, 02-N-3 Ayg=1, Ry=1, 4A, > A %, 4R, > R;?

(1T (a, 1)\T
- P
Za2npQ [[A]’[R]] B j [[ ;5] [2;] * [iz}

is reduced by using the recursion relations

A

Zaaneg = Zaz2(n-2)P0 Y MZaz2(m-2) (p+1)o t 22 Za2(n-2) (P+2)0

(A.2.2)
and
Zaaneg = Zaznp(0-2) Y R Zaan(p+l) (0-2) * R2 Zaan(p+2) (0-2)
(A.2.3)
until N and Q are either zero or negative. If N=0,
Za2opg = %aipn ((RD- (A.2.4)
If Q=0
Zponpo = Zarpy ([AD)- (A.2.5)

If both N and Q are negative, a recursion relation on P

is derived by integrating A.2.1 by parts to give




udh

P+l ek

X __ ()

Z = N
A2NPQ P+l

%0 |
R
(R) J

0

_RoR@ * RohN
2(p+1) A2(N-2) (P+1) (Q-2)

) AlRl(N+Q) +2A0R2Q + 2R0A2N

T(P+L) Za2 (N-2) (P+2) (Q-2)

AleN + R1A2Q + 2A2R1N + 2R2A10

2P+ D) Za2(N-2) (P+3) (Q-2)

AR, (N+Q)
T TPHL zAz(N-z)(p+4)(Q_2) (A.2.6)

Equations A.2.2 and A.2.3 have been used in deriving the
above equation wherever necessary. Another equation is obtained

by applying equation A.2.3 to each of the terms on the right

side of equation A.2.2.

Zaaneg = 2oRo Za2(n-2)P(0-2)
+ (AyRg + RyAg) Zp5(n-2) (P+1) (Q-2)
+ (ARy + ARy + AgRy) Zp5(N-2) (P+2) (Q-2)

+ (AjRy + M Ry) Zp5(N-2) (P+3) (Q-2)

+ A2R2 ZAZ(N—Z)(P+4)(Q-2) (A.2.7)




ZA2NPQ is eliminated from equation A.2.6 and A.2.7 to give

1
1 P+l

X
2R

N+P+Q+ _x - kN %Q
71— MRy Zaa w2y ey (@20 BET (M (R

1 1 1
- __p+l{A132(7N+P+Q+l] + Ale{N+P+-2-Q+l}] a2 (N-2) (P+3) (0-2)

|-

1 1
{AORZ (P+Q+1) + AR, (3 N+P+zQ+1) +A,R, (N+P+l))

J
+
-

32 (N-2) (P+2) (Q-2)

|H

1 1
[“oRl‘P+§Q+1"*AlRo‘EN'*P'*l’)ZAz(N-z)<p+1)(Q-z)

av]
+
-

- AR

oRo Za2(N-2)P(0Q-2) (A.2.8)

Changing N to (N+2), P to (P-4), Q to (Q+2), the

recursive relationship is (N and Q < 0)

1
. ) «P-3 (A)%N+1(R)%Q+l
A2NPQ  N+P+Q+1 A, R
272 0
Mg R} 1)
T (7N+P+Q) t 5, [N+P+§Q Z
- N+P+Q+1 A2N(P-1)Q
[ﬁn ! (Lyepslo-1) Ro
AZ (P+Q-1) + K—Z—Rl— L§N+P+§Q-1 + R3 (N+P-1) 2
- N+P+Q+1 A2N(P-2)Q

T L T T R




AR AR \
071 ( 1 170 [1
—== |P+3Q-2] + N+P-2
_[AZRZ 30 ) LR, (2 ]J
N+P+Q+1
(P-3) AORO 2
(N+P+Q+1)A2R§ AZ2N(P-4)Q

Za2N(P-3)Q

{(A.2.9)

This recursive relationship is used while P > 3 and

N+P+Q+1 # O. zAzNPQ

Appendix.

for P=0,1,2 1is evaluated later in this

For N+P+Q+1 = 0, equation A.2.7 rewritten as

R, A
VA = L 2 - _]: + ..l VA
a2neQ T TR Zaz2(n+2) (p-4) (@+2) T |R, ¥ K| Zaan(e-1io
SR, MB L g, S e T T s |
R, " LR, ', | Zazn(e-20 T |LE, ¥ X, | ame-n0
AR
oRo
T TR, Zan(p-4)Q (A.2.10)

can be used recursively until P is O

or 1 or 2 or 3. However,

for the given range of values, this equation need never be

invoked.
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Special Case

If A2R2 << 1, equation A.2.9 is very error sensitive.

Equation A.2.8 rewritten by changing N to (N+2) and Q to (Q+2)

as
, _ (A(l))%N+l (R(l))%o+l ) (N+P+Q+5)A2R2 .
A2NPQ (P+1)A0Ro (P+1)A0R0 A2N(P+4)Q
AyR A,R
1 1M1 271 1
ST [AORO (-2-N+P+Q+4) + TR, (N+p+-fo+4}] 22N (P+3)Q
R AR

A
1 2 1711 1 2
PII EE (P+Q+3)-+X3—3(5N+P+§Q+3]-+K; (N+P+3)

]ZAZN(P+2)Q

B o (P+1 +2) + 1 (lN+P+2) z
1 R, (P20 Ry 2 A2N(P+1)Q
(A.2.11)
along with the approximation that for A2R2 << 1,
% (N+2) %(Q+2)
L R(1)
Zaanpg * BT (A(D)) - (r(1)) (A.2.12)

is used for the evaluation of 2 (..) for all N, P, Q.

A2NPQ

End of Special Case
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ZAZNPQ is evaluated for P=0,1,2 by writing

[P P

kN
1 A R %0
= 5N . %Q 1 1 2 pil "1 2
ZAZNPQ'- A2 R2 X; + AZ X +x X [R2-+R2 X4x dx
0 (A.2.13)
Ay Ry R
If R the substitution t = 2x-+§— is used to give
2 -2 2
Ry
24— AN 0
2, Mg ¥ R 4A.-A,2 P 4R,-R, ?
z =2 _2 g2+ —2 11 Je- Ll 221} gt
A2NPQ N+P+Q+1 2 Ry 2
2 A R2
Rl 2
Ry
A!SNR;Q P R1P-S R R
| N i N\ P - P SN
MO o (s) (U Ry ANSQ |R, )
(A.2.14)
t
' 2 e S fy2 ®
‘ where 7,3 0 (tgrtyraged,) =I (82+s8,) ¢ (t2+s) dt (a.2.15)
‘ t
‘ 2 0
4/\2 e /\1 4R2 - R12
&) and where AA = ————2—- H AR = —_—
- A, R2
bRy
If — # == , the substitution
Ay 7 Ry
X = a + bB (t)

%%% is the bilinear transformation on t and

where B(t)

It

S g




A

A~-12

where
X b L
A,~-R Ri- A A
_ ) 1= N 1 1 1 R
as= ~ i b= la?-—xas—= | = (324> 441 =laZ+=— + a =~
MR, ~E,R] [ AR A2R1] [ K, K, Ry R,
(A.2.16)
The above substitution* gives
*Noting that
t =B [3‘:’-2] ; dx = —2R g¢;
(t+1) 2
The first factor becomes
A1 \ BN %N
(2b)!EN [a+b+-2—l}
A,
N t2 + B b
(t+1) M
a + 55
2
The second factor
)
P P-s
P P s-P
o fen ) e Db ) ] e
(t+1) s=0
The third factor becomes )
\
Ry 1 %Q %0
(2b) 2 [a+b+—1-]

(£+1)9

2R
2 2 B b
ts + [ ﬁ]
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R
|~
o
——
[
w
e

where
ty , LN P
= + t+l
%o
Beginning of ZAZ(-l)P(-l) evaluation

ZAZ(-l)P(-l) is evaluated using equation(A.2.14) if

A R
and equation (A.2.17) if A—l # % » Or equation (A.2.10) if P=1
2

End of 2

N
AN R;’Q (2p) N+ %0+ 1 {a+b+—i] {a+b+

- l]P-s ZpAN(s-0-P-0-2)Q { 5 'B[a'l) 'B[_}h] ’B["’ * 2RzJ

(t2 + Az)LSQ dt

A2(-1)P(-1)

%0
R
] (a+b)P
J

[

N

Ry

2A2

(A.2.17)

i‘

(A.2.18) :

j
Ay Ry
A2 Ro

evaluation




A-14

Beginning of 2 evaluation

A2(-2)P(-1)

Beginning of ZAZ(-Z)Z(-l) evaluation

z S J x? dx
A2(-2)2(-1) AZRZE 0 I PN b R 2 5
A—- A—-X X R—+R—x+x
2 2 2
}
: 1
~ 1 1
{ = I % dx
My RYE LL+—lx+xﬂ
R, R
i !
A 1

TR PA2(-2)1(-1) T &, “A2(-2)0(-1)

% or
3 1 Ay 1
k Za2(-2)2¢-1) = 1, Zp10(-1) ([RD) - T, 2a2(-21(-1) " %, Za2(-200(-1)

i
E, End of ZAZ(—Z)Z(—I) evaluation

ZA2(-2)P(-1) for P=0 or 1 is evaluated using equation (A.2.14) if

Al Rl .
== R and (A.2.17) if
2 R

MRy
Ay # Ry °

End of 2 evaluation

A2(-2)P(-1)

R R P TRy e Tt e




A.3 The Evaluation Procedure for zA3NPQ

t

N p
Zp3NpQ = (2 +8))7 ¢t (2 + AZ)%Q at

to

: 3 z i
Beginning of ‘A3 (=1)P(-1) evaluation

If ap < a;, we write
Zp3-1yp(-1) (tort1:®1:%2) = Zaz(c1yp(-1) (ortiroarey)

From this point on it is assumed that a, > a)

Let t = 01% tang; el = arctan ul—%tl; 6o = arctan al-%to

9, alk(P) (tane)® sec?o ﬂ?de
VA =
A3(-1)P(-1) I N 1 %

8y (aya,) " sec?e [;; sin?e + cosze)

(P) 8
_u 1 tan® o do
o ;5 a1 _]i
2 8 11- Il-—) sinze)
0 a2

a) . @) a1
Letting 4A(8)= V/; - [l-;;]sinze y, k?i=1-—, k2= rrY

= —Yf:fg F(e, k) - %(GOIR}

Zy3(-1)0(-1)

(G&R 2.584.1)




i a0 _BREL D aaha

f e e —

1|, ) +k aeg)-k-
2k~ |7 |5(e

01}5
Za3(-1)1(-1) =[E§)

a(e,)+k” aeg)-k”
A[eo)+k’ A(el)-k‘

1

Zp3(~1)2(~1) =__——012!5k‘2 A(el)tanel-E(el,k) -A(eo)taneo
+E(84.k)
(G&R 2.584.90) ?
§ A[el)tanel-A(eo)taneo
= (uz]
-E(0,.k) + E(eg.,k)

Where F(6,k) and E(6,k) are elliptic integrals.

When a; = a,, these simplify to

_ 1 -
Za3(-1)0(-1) = () (61-94)

_;il tlz + (!1
fas-n1-n TR

Za3(-1)2(-1) = (ty-te) = o1 Zpr3_1)0(-1)

End of Z,3(_1)p(-1)

J-K” af{eg)+k || (G &R 2.584.73)

Evaluation




Beginning of 2 Evaluation

A3(-2)P(-1)

]

ZA3(-2)P(—1) is evaluated using the substitution t=a;° tansé
2 - asz Jel cosé tanpe de
A3(=2)P(-1) 8, cos?26 + a, sin?e
- T = -
where eo = arctan aj to. el = arctan aj tl.
i
: For P=0, the substitution u=sinf gives
{
ZA3(—2)0(-1) = ZA3 (sineo, Sinel, o=, 0.1}
, where
u)
ZA3 (uO' ul, b, a) = { _d_u—_
a + bu?
uQ
. ! by ) by % .
: = /;E.garctan[(;) ulJ arctan{(g) uy ¢ if ab > 0,
"1
' =L (u-u) if b =0
a 1 0
’ u, - u
= % ___ul . 0 ifa=0
0°1
1 a-+(-ab)%u1 a-—(-ab);su0
- in if ab < 0
2(-ab); a+(—ab)%u0 a--(-ab)%ul

For P=1, the substitution u=cos3 gives




o e ™ = e
T Bbh e g s oo g

A-18 f
i
{
{ !
" !
ZA3(—2)1(—1) P} ZA3 ICOSBO: cosel,(al-az),az) j
1
!
L End of ZA3(-2)P(-1) Evaluation
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A.4 The Evaluation Procedure for 2

A4NPQ
A procedure for evaluating
t
LN P
Zaanpg(tor Frre1raz) = I (£2+01) ™ (£+ )% (£2 44, at
to

is discussed in this section for P=1,0,-1,-2. If P=0

QS

Za4N0Q = Zp3nogfle-e-r)

If pP=1,

ZA4NIQ(-....) = A3NOQ( ..... ) + ZA3NlQ(.....)

ZA4NPQ('"“) for negative values of P is invoked only when

==, Q=-1. 1In that case, if a; < a;, we write

Zag(-1)p(-1) (Port1r®1092) = Zagq)p(-1) (Egrtyroaran)-
From this point on it is assumed that o, > a;. Let

t=o;1!s tané; to =a1!5 taneo; tl=a1;’ tanel.

e
' (1+a,% tane)F ae

%

1 -—
a2

Zag(-1)P(-1) = 115 J X
A4(-1)P(- '
@2 ll—[ al] sinze]
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. JI-KZ sin? 2 ®1 2 M
Letting A(8) = V1 -k* sin?¢ where k4=1-—/— , k*%4=— ,
a2 oz
we write
5P 8,
2 _a (c +tane)® de
A4 (-1)P(~1) —;:!s_ A (5)
89
where ¢ = al—%
Zaa(-1) (-1) (-1) = % [F(ellk) - F(%'k)}
(1+ay)a,
ay
+ —*;5 ["(511"(1_"'“1) ,k) - W(BO,-(1+G1) rk]]
(l +a1) as :
= .

1

2/ (1+ay) (l+as)

1n

1.%
(l+a'£-)

1%
+ (1+H) 8(8,)

L

(141 5 (14197 agey)
o o

1

1% 1.
(1+a-g) - (l+a—) A(8g)
1.% 1.%
(1+H) + (1+'&‘1—) A(eo)

i

e P NBG N TETRMM Y o - Ty R By -

'
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Also from tables of integrals, (G &R 2.591.2)

z = - -
A=D1 (-2 D) alaz!’ (c+tan 0)) cos?8; (c+tangy) cos?e, (1+a1) (1 +a)

+ 22 1 1 2 2 a )*s
THnTFa) | of | 'w Y 5] sy - - ‘%%

+ tand; & (68;) - tan8, A(8g)

1 1
- 0—2~F(el,k) + EF (eo,k)

- E(ellk) + E(eork)

End of ZA4(-1)(—2)(-1) Evaluation

b The elliptic integrals used in this evaluation are l

E computed using standard routines from the SSP library.

S R O O T T T T TR
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' A.5 The Solution For 2 { )
;
1

= kN Ko M 55
% 2 5 5SNOMS (a1, [8].[c) = )0 (A(x)) 2T (B(x)) ™ x (C(x))*" dx j
] (A.5.1)
i is invoked only for N=0 or 2. If N=Q,
u ZasooMs (o0) = Zaooms (8], [cD. (A.5.2)
2 2 z
| Zasaqus (-o0) = ‘Zo Ai%po0msiys (81D (A.5.3)

l=
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APPENDIX B

CLOSED FORM SOLUTION FOR SOME DOUBLE INTEGRALS ARISING IN

THE COMPUTATION OF MUTUAL IMPEDANCE QUANTITIES

Notation:

2 2-i i1
R = R(x,y) = R (y) =R, (x) = I I R, X y A
i=0 j=0 )

Writing R(x,y), as the trinomial Ry(x) implies the form
2 {2-i _ .
Ry(w = 1 D) Rij yJ x*
i=9 (j=0
Writing R(x,y) as the trinomial Rx(y) implies the fornm
2-3

2 ; -
R ly) = E £ Ryy x*| y)
j=0 {i=0 7

. 2 s
[Ry] is the vector ((RDO +R) Y +#RoY )(Rlo-+R111) RZO)

i 2
[R,] is the vector ({Rgg * RygX *+ Rypx?) (Rgy +Ry1%) Rg3)

Similar notation is used with A(x,y). Furthermore, [Rx_ol rep-

resents the vector (R00 ROl ROZ) whereas [Ry=0] represents the

vector (Roo R10 R20)’ etc. The trinomial Rx=o(y) is written
Ro(y) for brevity.

v
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B.1 The Computation of Zg),oye
By definition,
1 1

= M ‘isfP 50
ZB1PQMS © JE Y (Ry(y) . X (R(x,y))*" dx dy

(B.1.1)
Writi n _ n-2 2 . . .
riting (R) = (R) R¢ it is easily proved that
! 2 2-i ’ L
! Zoipams = ;N I Riy PBL(P+i) (9-2) (+)s (B.1.2)
&
and
i 2
' ZBlPQMS N jio ROj Zgl PQ (M+7j) (S-2) (B.1.3)

Equation B.1.2 is used recursively until @ is zero or
negative. Equation B.1.3 is used recursively until § is zero
or -1. A recursion relation for reducing the value of M and
P is derived as follows:

K Integrating the inner integral in equation B.l.l by parts,
™ 1 1
Fs _ 1 P+l M ks Y
- Zp1poMs = 3y X I Y (Ro(9)) ® (Ry(x)) 2 ay J
0 x=0
1 2 2-1i ]
, TR L L P2 Ry Teieed) (@-2ieed)s (B.1.4)

ol

Cr e aRA R P NGB G, WE AR oWm gL e ey N



Subtracting equation B.1.2 from B.l.4

1
P+l
0 = ™ 2, ms ([Ry (O 1, [Ry(0)]) }
x=0
2 2-i
Tilo 520 (i Q42 +1) Rys Zg) (py4) (0-2) (e (B.1.5)

In equation B.1.5, the sum of the subscripts in the P and

M positions of Zgq is (P+M+i+3j). This is highest

when i+ 3j = 2. Separating all terms that meet this criterion

(P+% iQ+1) R{ (2-1) zgl(p+j_) (Q-2) (M+2-i)S

[ )

Eo (Brh 104D Ryy Zpy(pyy) (Q-2) (Mt §)s

or changing P to P-2, Q to Q+2,

0 (P+%1Q+1-1) Ry n_ iy Zg3(p-(2-1))Q(M+2-1)S

[l M

1
_ p-1
=% " Zpp(qe2yms () ]
x=0

I (PH%iQ+i-1) Riy Zny(po(2-1))Q (ud)s (B.1.6) |
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The implications of this recurrence relation are shown in
Figure B.1.1. For a given value of Q and S, different
ZBlPQMS values map onto a grid in the P-M plane. The points
of the grid with two circles around them (A and G) are the given

values of P0 and Mo. When Po # 1 (Point A) equation B.1.6

gives a linear combination of Points A, B and C in terms of D,
E and F. When P0 = 1 (Point G), a linear combination of
points G and H is given in terms of Point J. 1In the grid in
the P~ M plane as shown in Figure B.1l.2, it is assumed that all
Zpy ...  for which P + M < n - 1 are known. Let 2, 4 ZBlPQ(n-P)S,
where all ZPn (P = 0 to n) are to be determined. The application
of equation B.1.6 for all Zon (P =1 to n) gives n linear
equations to be solved simultaneously. Another equation is

generated as follows:

Integrating B.1l.1 by parts,

1
! M+1 XS
Zgipgus = i | Y (RoO(YD)™ Zpp6 ([Rx(¥)D) }
y=0
2 2-i
) iio jio %03 Rij 281 (p+1i) (Q-2) (M+3)8
: (B.1.7)
- E %53 Roy Zipg(med) (5-2) -t
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Substituting eguation B.l1.2 into the last term and equation

B.1.3 into the second term, ejuation B.l.7 becomes

1
- 1 M+l kS
Zpipous ~ W+l Y (Ro(¥)) ™ 2,755 ([Rx(y)]) ]
y=0
1 2 Z_j 2
- —= I z X (;sz‘F!skS) R.. R
M+1 j=0 i=0 k=0 ij "0k
X Zg) (P+i) (Q=2) (M+j+k) (S-2) (B.1.8)

Combining equations B.1.2 and B.l1.3, another equation for

ZBlPQMS is obtained.
2 2-j 2
z = I z I R.,.R. Z . . oy (B.1.9)
BIPOMS .,y j—0 k=0 1IJ Ok "Bl(P+i)(Q-2) (M+]j+k)(S-2)

Subtracting B.1.9 from B.1.8 and multiplying throughout by (M+1),

l
A‘d"' l S
y ;5

{(Ro (y)) ZAlPQ ([Rx(¥)]) J

y=0

(530 +M+L 4% kS) Ry Row 250 (pri) (0-2) (M+3+k) (S-2)

(B.1.10)




gy

In equation B.1,10, the sum of the subscripts in the P and M

positions z131 is (P+M+i+j+k). This is highest when k=2

and 1 +j =2, Separating all terms that meet this criterion,

2
jEo (PO AMALES) Ripgys Roz Par(pe2-5) (@-2) (M +2+35) (S~ 2)
1
M+1 %S 9
=y (Ry(y) ) *° 2 ( ]
0 A1PQ y=0
2 2-3 min(3-i-3,2)
-z L T (% jJO+M+1+%kS) R,. R
j=0 i=0 k=0 13 0k

X 21 (P +1i)(Q-2)(Mei4k) (S~ 2)

or changing Q to ¢+2, M to M-4, S to S+2,

™~

(50 +M+S~-1+3) R

0 (2-5)3 &

02 ZBl(P+2 -jjQ(M-2+3) s

1
_ M-3 X (5+2)
=y~ (Ry(y) ZAl(P)(Q+2)(')]
y=0
2 2- min(3-i-3,2)
- I z L (% I Q+M+%kS-3+3j+k) R,. R
j=0 i=0 k=0 13 ok

LRi(P+i)Q(M-4+3+k) S

(B.1.11)




The implications of this recursion relation are shown in

Figure B.1.3. For a given value of Q and S, different ZBIPQMS

values map onto a grid in the PM plane. The point with the

circle on it is a given value of PO and Mo. The left-hand

side of equation B.l.1ll is a linear combination of the points in the

shading. The right-hand side maps the points iN  the dashed

area. Thus equation B.1l.11 calculates a linear combination

of the dotted ZBl quantities in terms of the quantities marked

with dashes (which have M ranging from MO-4 to MO-l,

P from P, to P, +2). It is also to be noted that the left-

0 0
most three points correspond to j =k =0. Therefore, the

multiplier for those points in equation B.Lll is (M-3)R10R00.

Thus when M0==3, only the terms involving M from 0 to 2 are

needed for the computation of the weighted sum of the dotted

points. For the calculation of 2 equation B.1l.1l1l gives

pn’
n~1 linear equations, yielding a total of 2n-1 equations
(n linear equations from B.l1.6) to solve for the n+1 values
of an The n +1 equations are chosen using n . equations
resulting from letting P=n downto 1(M=n-P) in equation
B.1.6 and 1 equation resulting from letting M = n (P=0) in
equation B.1l.11l. This set has been chosen so as to maximize

the use of equation B.l.6 which is simpler in form.

v e oy ————- e i" wm
NSRIPAIA RSN RSN _a v
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The application of equation B.1l.1l1 for P=0, M=n, gives
(n+s5-1) R20 R0222n+ (n+S-1+% (Q+2)) Rll R02 zln

+ (n +5-1+(Q+2)) Ryy Ry, 2o =S, (B.1.12a)

where 1

~3 (s+2
S1, = Y3 (Ry(9)) *5*2) Zaro(oe2) ([Rx(¥)]) ]
y=0

2;j min(3-i-j,2)
0 i=

)
He1 N

(%3Q +n+%kS ~3+3+Kk) Rij Ry

=

j 0 kEO

2810 +1)Q(N-4+j+k) S (B.1.13a)

The application of equation B.1.6 for P=1 and 2 (M=n-1 and

n - 2 respectively) gives

A = § (B.1.12b)

¥ (Q+2) R 2 + (0+2) R20 1n 2n

11 "On
R02 z0n+ (L+% (0+2)) Rll Zln +(1+(Q+2)) R20 ZZn = Sm(B.l.IZC)

where

San = Za2(0+2) (n-1ys Ry W 1/ Ry (011) = 25 (14 (gusia) [ IRy (0)1)

%i(Q+2) Rij 231 (1-( 2-1))Q(n-1+§) 8 (B.1.13b)




and where

Sin = Zaz(ge2) (n-2)s  ([(Ry(D] + [Ry(0)]]
1 1-d
- iio jio (1 + % 1(0+2)) Rys 25y §o(n+i-2)8 (B.1.13c)

Equations B.1.12 are solved simultaneously to give

ZOn, zln and Z

if 9Q=-2 in which case ZOn and Zln are computed numerically and

2n° It is seen that the three equations are singular

Once zOn’ Zln and Z2n

are computed by writing equation B.l.6

z2n is computed using equation B.l.l2a.

are known, all other zPn

in the form

2, = 1
Pn (P+Q+1)R20

Za2(0+2)Ms ([Ry(l)] ’ [Ry(O)])
- (P4+%0Q) Ryy Zip gy, = (P-1) Ry, Zp o0

0 jio (P.F%j'(o+2)-l)Rij zBl(P-(Z-i))Q(n-P+j)S

(B.1.14)

Figure B.1.4 summarizes the calculation strategy.

A recursion relation that is simpler than equation B.1l.1l1

can be derived when =0. Under this condition the last term in

equation B.1.7 vanishes and, subtracting B.1.2 from B.1.7,

——— ——
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B-14

1

0 = yM*?! zAlPQ([Rx(y)]] ]
y=0

b (% 30 +M+ 1) R, 2

2o j "Bl(P+i) (Q-2) (M+3)0

Separating all terms for which i+j=2,

il o1 80

o EIFMF DR 55 Zg1(pe2-3) (Q-2) (M+3)0

1

M+1
=Y * zAlPQ ([Rx(Y)]} }
y=0

1 1-i
- I = (!;jQ+M+1)Rijz

i=0 j=0 Bl (P+i) (Q-2) (M+3)0

or, replacing M by M-2, Q by Q+2 throughout,

2
jio (G5 3Q+M-143) Rey_sy5 2p3 (P+2-9)0Q(M-(2-3))0
_ w1 ]
=Y Zapoen (IR ‘Y)”J
1 1-i

- i:O jio (% 3 (Q+2)+M-1) R;s Zpy (pyiyo(M-(2-7))0

(B.1.15)

(B.1.16)




Using B.1.6 and B.1.16, all points on the P-M grid except
P=M=0 become candidates for recursion. When n=1, M=n, P=0,

equation B.1.16 gives

5(Q¥2) Ry 23+ (Q42) Ryy Zg) = Zpyp(g.,) ([Ry(1)])

= Za1p(os2) ([Rx(0)1) - %(0+2) Ryy 2,600 (B.1.17)

which is solved simultaneouslv with equation B.1.12b to give 2

01
and le' When n=2, equation B.1.16 for M=2, P=0 becomes
R20 220 + (1 +%(Q+2)) Rll Zu + (1+(Q+2)) ROZ 202
= Zajocge2) ([Rx(1)])
1 1-i
- iio jio (% j (Q+2) +1) Rij ZBlinO (B.1.18)

Figure B.1.5 shows the P-M grid and outlines the stragety

for calculating all ZBlPQMO'

The numerical calculations are performed using a ¢ nroint
Gaussian integration (Abramowitz and Stegan, formulae

25.4.30) whereby
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Ty

1 6
_ 1 1 1
j Ely) dy =5 I wif(5x; +3)
i=1
0
where W, and x; are given by (Abramowitz and Stegun, Table 25.4)

for various values of n. Thus,

6
1 M s/2
Zpipgus = 2 I Wi Wy (Relyy)) T 2y pg ([Ry=yi])
1 (B.1.19)
where Yi =3 (xi+l). -




B.2 Closed Form Solution of 2 (..).

B2NPQMS ‘
By definition, i
1 1 z
_ (M s %N _P
Zganpous ~ J v, )7 J (hx,9)) ™ %P (Rx,9)) @ axay
0 0 (B.2.1)
writing ()™ = ()2 ()™ 2 it is easy to see that ’
2 2-i
“panpoms ~ (L jio Ri5 ZBaN(p+i) (Q-2) (M+3)S (B.2.2)
2
ZBaNPOMS jio Roj 2B2NPQ(M+3) (S-2) (B.2.3)
2 2-i
Zoawegus ~ I I, Mi3 fm2(v-2) (pri)Q(msd)s (B.2.4)

Equation B.2.2 is used until Q is 0 or negative. Equation
B.2.3 is used until S 1is 0 or -1. Separate recursion relations
are derived for reducing the value of (M+P) depending on

whether S and Q are zero.

Integrating the inner integral in Equation B.2.1 by parts

1
1
1 P+l M XS N 0
aopans = 557 0 | ¥ (R ()T Ry &
0 x=0
L 2 21
TR R I PPN My Taov2) (erioow) s
L2 2-i
TET R I FRORis % o) (@-2) () 8 (B.2.5)




Applying equation B.2.2 to the second term and B.2.4 to the
last term in equation B.2.5 and then subtracting the combination

of equations B.2.2 and B.2.4 from it

1
Zysnaus ([0 (R [Rg])

«x=0

2 2-i 2 2-k
- 5 I £ I (4iN+P+l+%kQ) A,
i=0 j=0 k=0 2=0 15 ke

X Zp3(N-2) (P+i+k) (Q-2) (M+j+2)S

The sum of the subscripts in the P and M positions is

i (i+j+k+2+P+M). This is highest when i+3j=2; k+2=2,

Separating all terms that meet this criterionm,

2 2
20 W EANABALARKQ Ay oo4) Bea-k) TB2v-2) (Pivk) (0-2) MHaMiK) ) 5
1
= Pl Zasnoms (o) ] "
2 2-i min(3-i~§,2) min(3-i-j-k,2-k)
- z ) z (%iN + P+l + XkQ) Atjakl
i=0 j=0 k=0 2=0

X Zp9 (N-2) (P+i+k) (Q-2) (M+j+2) S

or, replacing N by N+2, P by P-4, Q by Q+2, throughout,




PURES e et s 2 e e d

2 2
Do iR Q) A 0o4)Re(2-k) BN (- (4-i-K) )0 (4-iK)'S
3 1
= <P~
=X zAS(N+2) .Q+2)MS G..) ]x=0
F 2 2-i min(3-i-j,2) min(3-i-j-k,2-k)
' - I I I z (%1 (N42) +P-3+3k (Q+2) ) A, R,
i=0 j=0 k=0 =0 ij
)
i X ZB2N(P-(4-i-k))Q(M+j+2)S (B.2.6)
N
The recursion implications of equation B.2.g are shown in
1 f Figure B.2.1l. In the P-M grid as shown in Figure B.2.2, it
is assumed that all ZBz for which P+M < n-1 are known. Let
A .
%rf ZBZNPQ(n-P)S where all an are to be determined. The

application of equation B.2.6 for all ZPn (P=3 to n) gives
{n - 2) equations to be solved simultaneously. If, as is

¥ sometimes the case, and

Zip-1)n’ Z%(-2)n’ Z(p-3)n Z(p-4)n

are known, equation B.2.g written in the form

1

(N+P+Q+1) A,, R, 2 - P-3
4 20 T20 “BNPOMS = x Z a5 (N+2) (Q42) MS (...)]

x=0

2 2-i min(3-i,2) 2~k
- I > I (gl (N42)+P-343k (Q+2)) AL R o
i=0 j=0 k=0 2=0 1

X Zpon (b= (4-i-K) ) Q(M++2) S

. € Cas {(B.2.7)
is useful for finding ZB2NPQMS.

TR RN RN g T T e
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|
|
3

If Q = 0, following a procedure similar to that used in the devel-

opment of equation B.1.6, an equation simpler than B.2.6 is

derived:

1 .
, (GOw2 el

e

(2-i) ZB2N(P-(2-i))0(M+2-1i)S

1
=% Znpauzins (e [RD) ]

1 .
(F(N+2)3+P-1) A, 5 Zpon (p_(2-i)) 0 (M+])S

(B.2.8)

Other equations are generated depending on whether Q and

S are zero by integrating the outer integral in equation

B.2.1 by parts




e e - - ot 3=

1
kS
! M+1
Zganpous = eI 1Y (Ry(v)) Za2nPQ {[AYJ' [RY]] ]y=0

2 2~-i
) iio jio N3 Aij ZBZ(N-2)(P+i)Q(M+j)s
2 2-1i
i iio jio %03 Rij ZB2N(P+i) (Q-2) (M+3) S
i
|
| : . (B.2.9
h jio % 83 ROj zB2NPQ(M+j)(s-2) .2.9)

If both Q and S are zero, equation B.2.9 reduces to

1
_ 1 M+1
Z32np0M0 T MFT Y Zaz2npo (--) ]y=0
: 2 2-i
Y T T LB NG Ay Zgo(n-2) (P4+i) 0(M+§)0
. i=0 j=0

|
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Comparing with equation B.2.4,

1
_ M+l
0=y Zponpo (- ) ]
y=0
2 2-3
T jto ico (41 +585) 845 Zgs (n-2) (P+i) 0(M+5) 0

or separating the terms for which i +j =2 while replacing N

by N+2, M by M-2 throughout

2
sEo MR A5y 12an (pa2-1) 0 (M- (2-3)) 0
1
= 1 Za2(ne2)pp -0 ]
y=0
1 i-j .
T Lo Ly MR A5 Zean(eeiyo (- (2-))0

(B.2.10)

Fiqure B.2.3 shows the recursion formula pictorially.

For S=0, Q#0, equation B.2.9 becomes, by application of
equation B.2.2 to the second term and equation B.2.4 to the

third term,
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7 _ 1 M+1
B2NPQMO ~ M+1 Y

1
ZAZNPQ[[Ay];[Ry])]ygo

L, 2 27i 2 2k
- z L z I (3Ns +%08) A, .
Ml j=0 j=0 k=0 2=0 ] i3 M

252 (N-2) (P+i+k) (Q-2) (M+j+2) 0

Combining equations B.2.2 and B.2.4 and subtracting the

result from the above,

2 2-i 2 2-k ( |
- I £ z z KNj+%Q8 + M+1) A,
i=0 =0 k=0 2=0 13 Fxe

22 (N-2) (P+i+k) (Q-2) (M+§+2) 0

or

(B.2.11)




L a2

2

et et o

1

0=y ZAZNPQ(") ]Y_O

2 2-5 2 2-2 ( )
-3 b T b SNj + %Q2 +M+1) A, .
j=0 i=0 2=0 k=0 13 Mk

282 (N-2) (P+i+k) (Q-2) (M+j+2) 0 (B.2.12)

Separating all terms for which i+j+k+2=4,

2 2

STo yTo (A N3 QLML) Moy iR 1 %82 (0-2) (BH3-1) (Q-2) (44540 O

1
M+1
=y Z (..)
A2NPQ ]y=0
2 2-3 min(3-i-j,2) min(3-i-j,2)-2 ( }
- by T LNj + %QL + M+1) A, .
j=0 i=0 2=0 k=0 i3 ke

282 (N-2) (P+i+k) (Q-2) (M+j+£) 0

or replacing N by N+2, Q by Q+2, M by M-4 throughout,

e et i St e




ner N
[l M

E]

(N +2)3+ %(Q +2)t+M-3]A

1

Zp2(N+2)P(Q+2) () }
y=0

-j  min(3-i-j,2) min(3-i-j,2)-¢
X L L
=0 =0 k=0

ZB2N (P+i+k)Q(M=(4-3-2))0

Figure B.2.4 shows this relation pictorially.

For Q=0,

(2-3) 5 R(2-1) ¢ ZB2N(P+da--2) QM (455-2)) 0

(50v2) 5 +h(042 2 +M-3) A, R,

(B.2.13)

S #0, combining equations B.2.3 and B.2.4 and

subtracting the result from equation B.2.9 after application of

equation B.2.3 to the second term and equation B.2.4 to the

last term,

0

%S
=y = (Ry(y)) " Zywp (.)]

1
M+1

y=0
2 2-j 2

£ £ T A, R (% Nj+ M+l + % Sm)
j=0 i=0 m=0 13 OM

ZB2(N-2) (P+i) O(M+j+m) (S-2)

(B.2.14)
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Separating all terms for which i+j+m=4,

(3 NjJ+M+1+S) A

0 (2-3)3 %

[ N

02 %B2(N-2) (P+2-3) 0(M+2+j) (S-2)

ks !
=y (Ren)) T 2y () }

y=0

2 2-j min(3-i-3,2)
-z L z (x Nj+M+1+%Sm) A,. R
j=0 i=0 m=0 ij Om

X Zg)(N-2) (P+1) 0 (M+j+m) (S-2)

or replacing N by N+2, Mby M-4, S by S+ 2 throughout,

o HNFD JEM-L1+8) An g5 Roa Zean(pe2-)0 (-(2-3))S

e N

1
M-3 %(sS+2)

v o (Ry(y)) Za1 (ne2)p ) J

y=0

2 2-j min(3-i-j,2)
-z T T (%(N+2) j+M-3 +% (S+2) m)Aij R

§=0 i=0 m=0 Om

X ZgoN(P+i)0 (M~ (4~3-m)) S (B.2.15)

Figure B.2.5 shows this relation pictorially.
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If both Q and S are non-zero, subtracting the combination
of equations B.2.2, B.2.3 and B.2.4 from equation B.2.9 after
applying equations B.2.2 and B.2.3 on the second, equations B.2.3
and B.2.4 on the third and equations B.2.4 and B.2.2 on

the last terms,

%S 1
0 =yt (RO(Y)] ZAZNPQ([I&] ’ [Ry]) ] 0
y=

2 2-3 2 2-2 2
-z z z L zo[knj + %08 + M+1 +!§SmJ Aij R, Ry

§j=0 i=0 2=0 k=0 m= n

X Zpy (N-2) (P+i+k) (Q-2) (M+j+L+m) (S-2) (B.2.16)

Replacing N by N+2, Q by Q+2, Mby M-6, S by S+2
throughout while separating the terms for which i+j+k+%+m=6,

equation B.2.16 becomes,

2
z

it o1

[!;(N+2)j+*s(Q+2)l+M'3+5] A(z-j)j R(z-z)z Ro2

0 =0

3

X 25N (P+4-i-j-2)Q(M-(4-j-2))S

1
M-5 %(S+2)

y (Rg () Zpp (n+2)p(04+2) *°) ]

y=0

2 2-j 2 2-2 min(5-i-j-k-2£,2)
-~z X T L b [%(N+2)j +!5(Q+2)2+M‘5+!5(S+2)m;|
j=0 i=0 2=0 k=0 m=0

x My Ry Rom Zp2aN(P+i+k)Q(M-(6-3-2-m)) S (B.2.17)




FaTo

Figure B.2.6 shows this relation.

The case where Q=S5 =0 occurs whenever the far-field
approximation is being considered. Calculation strategies are
developed here for the Q=S =0 and the general case Q#0,

S#0. The other two cases Q=0, S#0 and Q#0, =0 occur
infrequently enough to justify not programming them as special
cases but rather to use the general, even when they occur.
Figure B.2.7 summarizes the calculation strategy for calculating

ZBZNPQMS‘ The relation

[

M

n oo

wo (M (R (y )52

ZpoNpQus T 2 ! 2A2nPQ ([Ay=yi:l ' [Ry=yi])

i
(B.2.18)

is used for numerical integration. Here, y; = %(xi+l) and Wy

and x; are given by Abramowitz and Stegun (Table 25.4, n=6).
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N
Q+S=0 ° For P=0 to 2,
write equation B.2.18 if
possible, solve numerically
otherwise.
Yes
For P=0 write For P=3 to 8, write
equation B.2.10 equation B.2.6
if possible,
solve numerically
otherwise.
] For P=1 and 2, Solve for
4 write equation pA
pn (P=0 to 8)
| B.2.8
!
Solve for For higher values
: an (P=0 to 2), of P, use
E from the equations equation B.2.7
] set up above
3

e For higher values
of P, use
equation B.2.8

B -
. o~
Bt

g

»

FIGURE B.2.7
£ i f
ZBZNPQMS or various values o

P and M (and given values of N, Q and S)

Calculation of
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APPENDIX C

L Notation:

'y

é R = R(x,y.,2) = Rx(y,z) = Ry(z,x)

* ! 2 2-i
: =R _(x) =R__ly) = I T
| vz -4 i=0 5=0

Writing Rx(y,z) implies the form

2

[l
o1

Rx(y,z) =

j=0 k=0 i=0

CLOSED FORM SOLUTION FOR SOME TRIPLE INTEGRALS ARISING IN

THE COMPUTATION OF MUTUAL IMPEDANCE QUANTITIES

3 2-j-k i .
j_k
[.Z Rijk X y-'z,

i.e., the variable appearing in the subscript is the most suppressed.

= This definition is consistent with the statement that [R€] is the

j matrix
! _ 2
Rooo * Rigp ¥ * Rypo* R
21 < | Roro T Riro *
(%]
| Ro20

with this notation,

101%¥ Roo2
011 0
0 0 |

Similar notation applies to the subscripts y and z. Consistent

PR T TYC W N RER




Cc-2
2 2-j .
k
R,(y,z) = I L R,. sz
0 j=0 k=0 03k
: and [Rx=0] represents the matrix
‘ Roo0 Roo1 Roo2
2 Ro10 Ro11 0
}
i | Ro20 0 ¢ ]
1
: Writing R as Ryz (x) implies the form
1 ! 2 2-i 2mi-n
-i ~i-7 C ok i
R (x) = X T X R, . yJ X
yz i=0 [j=0 k=0 13K

and is consistent with the statement that [R z] is the vector

r 2 2-j . b
j k
I 5 Y
j=0 k=0 % 3
1 1-j .
J_kK
z T R, . Y 2z
j=0 k=0 13K
R
i 200 |

Consistent with the above definitions, [

R(y=0)(Z=0)] implies the

vector

000

100

LRzooA




C.1 The Computation Of Zc)poMsGH

By definition,
1 1
= G H/2 M 5/2
Zc1POMSGH ~ !z (Ryq(2)) f Yy (Rg(y,2))
0

1

% ./.xP(R(x,y,z))Q/z dxdydz (C.1.1) |
o 1
writing ()% = ()2 (.)? it is easily proved that
B 2 2-i 2-i-j
{ pA = I I z R.. 2 . :
: CIPOMSGH — ; ., 2o k=0 ijk “CLl(P+i) (Q-2) (M+3j)S(G+k)H,
2 2 (C.1.2)
Zcirusen I I Fojk ZC1PQ (M+j) (S-2) (GH+K)H :
i 1= k= (C.1.3) :
and é
2
z = § Ry 2 )
cipomsei I Rook Zclpoms (G+o(H-2) ©.1.4)

Equations C.l.2 through C.1.4 are used as recursion relations for
desired values of Q, S and H in terms of (smaller) given values of
Q, S and H. Relations for giving ZCl for desired values of P, M

and G in terms of given (smaller) values of P, M and G are derived

as follows:




e ——— ———..

e J R L PR

Integrating the integral on x by parts

Zc1pQMsGH ~ —————Pil xFt1 fl 2° (Roo‘z”F/2 fl v :‘
0 0 g
(Ry tv,20) %2 ® ty,2nY? dm} ! |
300 i
|
2 2-i 2-i-3 ,
DL L oo 2 Mgk Zoi(pei) (0-2) (M49)S(GHR) H

(C.1.5)

Comparing with equation C.1l.2,

P+l
0=x Zpoomscr ([Ry1s [Rx=o]’]

i 2-i-j N
L (7 1@ +PYLIR; 4 %01 (P+i) (Q-2) (M+3)S(GHK)H

0 k=0

(C.1.6)

Separating the terms for which i+j+k = 2, which changing P to P-2,

Q to Q+2

' l ' B




X

The implications of this recurrence relation are shown in

Figure
values
of the
values
linear

when P

in terms of point P. A plane of constant P+M+G is shown in Figure C.1.2
Recursion relation C.1.7 can be applied to all ﬁ%ints for which
P>1. n+l more equations must be generated (for P=0) in order that

all points in this plane may be solved. This is done by integrating

the integral on y by parts to give

2-1i
1.
0 jﬁo (51(Q+2)+P-—1) Rij(z-i—j) ZC]-(P+i-2)Q(M+j)S(G+2—i-j)H
p-1 1
= X V4 X
B2 (Q+2)MSGH {..) ] 0

1 1-i 1-i-j .

5 5 5 ( L i+2)+p-1) R..
i=0 =0 k=0 2 13k
2C1 (P+i-2)Q(M+3) S (G+k)H (C.1.7)

C.l.1. For a given value of Q,S and H, different ZCIPQMSGH

map onto a grid in the P-M-G coordinate system, The points

grid with two circles around them (A and L) are the given

of PO,M0 and GO. When Po#l, (Point A) equation C.1.7 gives a
combination of points A through F in terms of points G, H, J and K.

=1 (Point L), a linear combination of points L, M and N is given




Figure C.1.1: Implications of the Recursion
Relation C.1.7




Figure C.1.2: P-M-G Grid for a Given Vvalue of
P+M+G
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1

Z = M+l [l G H/2 s/2
C1PQMSGH T {y jg 2= (Ryq(2)) (Ry(y,2))
1 1 2 2 2-i-j
P /2 :
X (R(x,y,2)) dxdz] -7 T Y MRz .
-/0 y=0  i= $=0 ¥=0 1ikC. ) (@2) BRIS
2 2-3
- z = Sj R .. 2 .
j=0 k=0 2 0jk “ClPQ(M+]) (5-2) (G+k)H

(C.1.8)

Substituting equation C.1.3 into the second term and equation C.1.2
into the third term, comparing with a combination of equations

C.1.2 and C.1.3, replacing Q by ¢+2, M by M-4 and S by S+2 through-
out and writing

1

= H/2 G S/2
ZB3PQHGS ([a), [BD = 1(.(A(y)) y  (By(y))
*
x ./ixp (B(x,y))9?  axdy (C.1.9)

. . 0 _. . .
where [B] is a matrix whosé first row is B, and[A)is a vector, the

following equation is obtained

_ .M-3 1
0 =Y " Zg3p(ge2)nc(s+2) ‘[Rocl [Ry]d
y=0
2 21 2-i-j 2 2-4 L 1
_ I z z z L (5 (Q+¥2)] + M-3+ 5 (5+2) )
i=0 j=0 k=0 2=0 m=0

RikRoem 2C1 (P+1)Q(M+3+2-4) S (G+k+m) H

* Techniques for solving zBﬂK}KEﬂ[AJ’Dﬂ) are similar to those presented




rmma m £ RS

or, separating the terms for which i+j+k=2, 2+m=2,

e 20 - Sm
0 mio (5 (Q+2) 3+ M-1-3= +5-m) R(Z-j-k)jk Ry (2.mm

[/ el 5]
[ I }

* 201 (P+2-3k)Q (M+§-m-2)S (G+k+m)H
_ M-3
=Y " Zp3pgr2)neis+2) ([Roel [Ry]{] g=0
2 2-9  2-j-k  min(3-i-j-k,2) min(3-i-j-k,2)-m
- 1 > z L L
j=0 k=0  i=0  m=0 2=0

1 X 1
z +M-3+ 1
(7 (Q#2)3#M=3+ 5 (S+2) 2) Ry Ropo 20y (pai)Q(M+j+2-4) S (Grk+m) H

(C.1.10)

It is to be noted that equation C.1.7 helps to write ZCIPQMSGH

in terms of other 201 with smaller values of P but larger.

values of M and G. Equation C.1.10 gives Z0q in terms of

LI I

other ZCl with smaller values of M but larger values of P

and G. Another recursion relation that gives ZCl in terms of

other ZCl with smaller values of G but larger values of P and

M is derived by integrating the integral on z in equation C.l.1l by

parts to give




2
1
x I3 Sk Ryjx Zelpo(M+i) (S-2) (GHK)H

1
) Hk R) ok ZClPQMS(G+k)(H-2)} (C.1.11)
Substituting equations C.1.3 and C.l1.4 into the second term,
equations C.1.4 and C.1.2 into the third term, equations C.1l.2 and
C.1.3 into the foyrth term, comparing the result with a combination
of equations C.1.2, C.1.3 and C.1.4, replacing Q by Q+2, S by S+2,

G by G-6, H by H+2 throughout, the following equation is obtained:

= G5 H+2) /2
0 =2 (Ryg(2)) (4212 70 0 o2 m(s+2) ([Rz])]

2 2-i 2-i-j 2 2-1 2
_ z z z z z z
i=0 j=0 k=0 =0 m=0 n=0
(%(Q+2)k+%(S+2)m+G-5+%(H+2)n)
R. ., R. R Z s .
ijk "04mT00n “Cl(P+1i)Q(M+3j+8)S(G+k+m+n-6)H (C.1.12)

or, separating the terms for which i+j+k=2, f+m=2, n=2
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2 2-3 2, N
L L I (5 (Q+2)+ = (S+2)m+G-5+ (H+2)R . .
j=0 k=0 m=0 (2 2 2) (Z-J-R)Jk R0(2—m)m
X R z . .
002 "Cl(P+2-3j-k)Q(M+3+2-m)S (G+k+m=-4)H
_ G-5 L (HE2) /2 11
2~ (Ryp(2)) “mip(oram(ssy ([RD |
2 21 2-i-j 2 2-¢ min(5-i-j-k-1-m,2)
- 3 T b) b z >
i=0 j=0 k=0 (=0 m=0 n=0

1 1 1
(§(Q+2)k+§ (S+2)m+G-5 +5 (H+2)n) Rijk RMm ROOn

301 (P+1)Q (M+§+2) S (G+k+m+n-6) H

(C.1.13)

As suggested in the discussion on Figure C.l1.2, equations C.1.7,
C.1.10 and C.1.13 can be used for various values of P, M and G in
order to generate enough equations to solve for all points on the
constant P+M+G plane simultaneously. Figure C.1.3 shows the left-
hand side points of equation C.1.7 (i.e., each application of
equation C.1.7 yields a linear combination of a cluster such as jis
shown in Figure C.1.3). Similarly Figure C.l.4 shows the left-hand

side points of equation C.1.10 and Figure C.l1.5 shows the left-hand

side points of equation C.1.13. At least one of the equations is




Figure C.1.3: Recursion Implications of
Equation C.1.7




2 "
PSS —

Figure C.l1l.4:

Recursion Implications of
Equation C.1.10




Figure C.l.5: Recursion Implications of i
Equation C.1.13
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applicable at each of the points and is solved simultaneously to

give the value of 2 at each of the points.

Clo--.a.
The case where Q=S=H=0 is of special importance because it is

involved for the far field case (see Appendix D for details).

The three integrals in the definition of Zcy decouple in this

case and

1
VA =
C1POMOGO (P+1) (M+1) (G+1)

(C.1.14)

i —— ———— .




C.2 The Computation of 2., novccy

By definition,
1

1 1
2CINPQMSGH = ]zG (Ryq (22 } " (R, (y,2)) 52 f (A ix,y,z)) V2
0 0

£ (R(x,y,2))%? axayaz (C.2.1)
writing ()™ = ()72 ()2 it is easily proved that
2 2-i  2-i~j
z - L L R U . .
C2NPQMSGH 120 320 xeo i3k ZC2(N-2) (P+3)Q(M+3)S(GHk)
(C.2.2)
2 2-i  2-i-j
z = g L £ R.. Z . .
C2NPQMSGH 120 o0 ko idk “C2N(P+i) (@-2) (M+3)S(G+K)H
(C.2.3)
2 2-j
2CaNPQMSGH = jio r_o 03k “C2NPQ(M+5) (S-2) (G+k)H
(C.2.4)
2
Z = I R.. 2
C2NPQMSGH woo Took Zcanpoms (G+k) (H-2) (C.2.5)

Equations C.2:2 through C.2.4 are used as recursion relations
for desired values of N, Q, S and H in terms of (smaller) given

values of N, Q, S and H. Relations for giving 2 for

C2iieneee
desired values of P, M and G are derived as follows:

- rkreVe e W R ligogv T
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Integrating equation C.2.1 by parts with respect to the

dummy variable x and applying equations C.2.2 and C.2.3,

1 1
.1 P+1 G H/2 M S/2
ZCINPQMSGH p+1{ x ./; 27 (Ryy(2)) ./; y (Ryly.2))

1
x (A ty, 2V (R (y,20)9? ayaz J
x=0
2 2-i 2-i-j 2 2-¢ 2-2-m )
- L £ z z L T (3iN + 2LO)A. .. R
i=0 =0 k=0 =0 m=0 n=0 2 2 ijk “tmn
X ZCZ(N-Z)(P+i+2)(Q—2)(M+j+m)S(G+k+n)H} (C.2.6)

Comparing with a combination of equations C.2.2 and C.2.3 and chang-

ing N to N+2, P to P-4, Q to Q+2 throughout,

1
0=x"373 (]p R
B3 (N+2) (Q+2)MSGH [ x]’ [ x]’EEF@]) =0
2 -1 2-i-j 2 2-4  2-%-m )
- z z z z z b (71 (N+2¥p-3+52(Q+2)
i=0  3=0 k=0 =0 m=0  n=0 °

x Aisk Remn ZC2n(P- (4-i~4))Q(M+j+m) S (G+k+n)H

(C.2.7)

A
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1 1
G H A
Zganousen (A1 [B]. [cD & jz Y  (Cyly)) & JC (a(x,y))V 2

S/2

B,y Y% Mcx,y))5? axay.

(C.2.8)*

Separating all terms in equation C.2.7 for which i+j+k=2 and

2+m+n=2, the followina recursive relation is obtained:

1. 1
(31 (N+2)+P 3*72‘Q+2”Aij(Z“i‘j’Rmmz-zﬂw

2C2i (P- (4-1-2)) Q (M+j+m) § (G+4=i-j-L-m)H

1
=x"3 g (...) ]
=x B3 (N+2)@+2)MsGH ") ] o
2 2-i 2-i-j min(3-i-j=k,2) min(3-i-j-k,2)~2 min (3-i-jk,2)~C-m
- z I > b L
i=0  j=0 k=0 2=0 m=0 n=0

(s 1 (H2)4P=-3+52 (Q+2))
A... R pA . .
ijk T4mn C2N (P~ (4-i-2))Q(M+j+m) S (G+k+n)H
(C.2.9)

* Techniques for the solution of Zp3uouseu([2]1.[B],[C]) are

similar to those presented in Appendix B.2 for 2

B2nPQMS ([A],[R]).
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If equation C.2.9 is written with N-No, P=Po, etc.,

each of the terms on the left-hand side has P+M+G=P°+M0+G°.

The terms on the right-hand side have P+M+G=P0+Mo+Go-n where

nis l1l, 2, 3, or 4. This statement implies that none of the

points on the right-hand side of equation C.2.9 fall on the

(Py+My+Gy= constant) plane. Figure C.2.1 shows a plane of
constant P°+M°+G°. Recursion relation C.2.9 may be applied
E‘ to all points on this plane for which P0>3. Equations that
may be applied for smaller values of PO are developed next.

Integrating equation C.2.1 by parts with respect to the dummy

variable y and applying two of the equations C.2.2 through C.2.4

to each term except the first,

ZeoNpQMs@H =

1 1 1

1 ) Ml G W2 S/2 N/2 P Q/2
ml{y ‘[02 (Roo(a) (Ro)sz)) j;(/\y(x.z)) X (Ry(x,z)) dxdz =0

2 2-1  2-i-j 2 2-4 2-f%-m 2 2-p 1 1 1

- I z b b T I I I (§“j+§Qm+§SP)
i=0 j=0 k=0 =0 me=0 n= p=0 a=0

X A

ijk Mum Ropg ZCZ(N-Z(P+i+E)(Q-z)(M+j+m+p)(S-2)(G+k+n+q)H:

(C.2.10)




Figure C.2.1




Comparing equation C.2.10 with a combination of equations
C.2.2 through C€.2.4 , changing N to (N+2), Q to (Q+2), M to
(M-6), S to (S+2) throughout, and separating all terms for which
i+j+k=2, f+m+n=2, and p+g=2, the following recursion relation is
obtained:

2 2-3 2 2-m 2 L

z I b3 z z (% (N+2) j +5 (Q+2)m + M-5+—§- (s+2)p)
=0 k=0 m=0 n=0 p=0

% Mo 3ky 3k R(2-men)ym Rop(2-p) ZC2N (P+4-3-k-m-n) Q (M~ (6~ ~m-p) ) S (GHk+n+2-p) H

_ M5 1
=V Tyqeapearsisia YR IR01

2 2-1i  2-i-j 2 2-2  2-f-m min (5-i-j-k~2-m-n,2) min($-i-j-k-2~-m-n,2)~-p
- L T z z z z z T
i=0 =0 k=0 =0 m=0 n=0 p=0 g=0

1 .1 1l
(5 (N+2)3 + 3 (Q+2)m + M~5 + 5 (S+2)p) Aijk Rﬂmn ROpq

X ZeoN (P+i+L) Q(M- (6~3-m-p) ) S (G+k+n+q)H (C.2.11)
where
1
H/2 G s/2

ZB4NPQHGS ([A]'[B]'[C])A j; (C(y)) Yy (BO(Y))

1
X [ (ax, V2% x P (Bx,y)) Y2 ax ay (C.2.12)*

0

———
——

* Techniques for the solution of anu‘*Es are similar to those presented
in Appendix B.2 for zsmm(["]'[*‘]"




Here, [A] and [B] are matrices, B, 1is the first row

of the matrix [8]and [C] is a vector.
Integrating equation C.2.1 by parts with respect to the
dummy variable z and applying three of equations C.2.2 through

C.2.5 to each term except the first,

1 1
_ 1) 6l H/2 j M s/2 f N/2
Zoaegusar T GHT { 277 (Ryg(2) LY (R, (¥)) A (Ax,y,2)
1
x P(R(x,y,2)¥? ax dY] 2=0

2 2-i 2-i-j 2 2-¢ 2=-U-m 2 2-p 2
- 2 X X z z z L b DI ¢
i=0 =0 k=0 2=0 m=0 n=0 p=0 qg=0 s=0

X Aijk Romn Ropq Roos Zc2(w-2) (PHit+r) (©-2) (M+j+mp) (S-2) (GHk+n+gts) (11—2)}

(C.2.13)

Comparing equation C.2.13 with a combination of equations
C.2.2 through ¢C.2.5 , changing N to (N+2), Q to (Q+2), S to
(S+2), G to (G-8) and H to (H+2) throughout and separating all
terms for which i+j+k=2, L+m+n=2, p+g=2 and s=2, the following

recursion relation is obtained:




BRSNS

- —— ——————

2-k 2 2-n 2 1 1 1
pX b z I (§(N+2)k + E(Q*'z)n + 5(S+2)q + G-7+(H+2))
k=0 i=0 n=0 2=0 a=0

M N

x A (2-k-i)k Re(2-n-2)n Ro(2-q)q F002 Zcan (P+i+2)Q(M+6—k-i-n-1-q) S (G-(6-k-n~q))

1

G-7
Zpo w2y P (o2 M(s+2) (A1 [RD ]z=0

= (H+2) /2
=12 (Ryg (2))

2 2-i  2-i-j 2 2-2  2-%-m 2 2-p min(7-i-j-k-2-m-n-p—q, 2)
-L z X I X L P z z
i=0 j=0 k=0 =0 =0 n=0 p=0 a=0 s=0

1 1 L !
(5 (W2)k + 5 (Q¥2)n + 5 (S+2)q +G-7 + 5'(H+2)S)Aiij1nnF0quOOS

X ZooN (P+i+2) Q (M+j4Hmp) S (G- (8-k-n-g-s) ) H
(C.2.14)
One of equatiors C.2.9,C.2.11 or C.2.14 is applied for each
(P, M, G) in Figure C.2.1. The resulting equations are solved
simultaneously to give each of the ZC2 . A much simpler
set of equations is generated for Q=S=H=0. This condition applies
in the far field case (see Appendix D). The first of the far-

field case equations is obtained by integrating the equation

TR RA W WAV E g,
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1 1 1
- G M N/2 _P
ZC2NPOMOGO ’f 2 { Y /(; (A(x,y,2)) xF dxdydz

0
(C.2.15)

by parts with respect to the dummy variable x to give

1 1 1
= 1) P+l G M N/2
ZcanpoMoGo T BEI ) ¥ /Z fy (A (y,2)) dydz]
0 0 x=0
2 -1 2-i-3
= z z I —=Ni A,. 2z ) ,
i=0 j=0 keo 2 ijk “C2(N-2) (P+i)0(M+3j)0(G+k)0

(C.2.16)
Comparing with equation C.2.2, replacing N by N+2 and P by PF-2
and separating all terms for which i+j+k=2, the recursive relation

(3(N+2) i+P-1) A ZC2N (P-(2-1)0 (M+3) 0 (G+2-i=3) 0

ij(2-i=3)
1

= X T Zmmauaco (KD ]x=0

1 .
(3 (N+2)1+P-D) A, 5y Zoy (p-2+1) 0 (M+3) 0 (G+k) 0

(C.2.17)

is obtained. This relation can be applied for all P>1. .. second
far field case equation is obtained by integrating equation ¢C.2.15

by parts with respect to the dummy variable y to give

I e Rk T TR e



1 1 1

= 1) Ml fG f N/2 P
2conPoMOGO T MFI 3 Y 0 2 4 Ay x2)) x~ dxdz -

ijk ZCZ(N-Z)(P+i)0(M+j)0(G+k)O;

(C.2.18)
¥ Comparing with equation C.2.2, replacing N by N+2 and M by M-2 !

and separating all terms for which i+j+k=2, the recursive rela-

£ tion

! 2 2-3

i Lo Wk FMRIMDA G 5k Tean (pe2-3-k) 0 (M- (2-9)) 0 (G+k) O

1
, M-l
= =y Zyipw2yco ((AD } _
2 y=0
1 1-i 1-i-j
- = 5 £ G2y jeM-A, L 2 . .
iZo 5t0 okl 2 i3k 2C2N(P+i)0 (M- (2-3))0(G+k) 0

(C.2.19)
This relation can be applied for all M31l. A third feor field

equation

2-k
z

1
(§(N+2)k+G—l)Ai

0 o (2-k-i)k 2C2N(P+i)0 (M+2-k=i)0 (G- (2-k))0

1
=z Zgipnezymo ([AD) ]

2=0

1 \
(F(N+2)k+G=13 A, 0 Zoon (pe) 0 (M+5) 0 (G- (2-K) ) O

(C.2.20)




is derived similarly. This relation can be used for all G:1.
A constant P+M+G plane is shown in figure C.2.2 and a strategy

: for calculating 2 is outlined.

C2NPOMOGO
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For Po=3 to n

For MO=0 to n-P

Use equation C.2.17 to
solve for (MO,PO).

. ° » ® . L] v T P2
[ ] * ® » [ ] L ] [ ] L ]
e ™M
la: Apply Aquation 2. |For Mo=3 ton
For P=2,1 apply equation C.2.17.
1lb: For P=0 apply equation C.2.19
Solve for (Mo-z,Z) (Mo-l,l) uado ) simultaneously.
lc:
apply equation
C.2.20.
Solve for these six
points. 1

Figure C.2.2




APPENDIX D

THE NUMERICAL PROCEDURE FOR THE COMPUTATION OF

WW WS SW ss
Zo ' Z0 ’ Z0 . AND ZO
Equations for the computation of Zgw, ng, Zgw and ng

have been developed in sections 2.3, 2.4 and 2.5. These are
developed further in this appendix to a form that is more con-
venient for computational purposes. The partial sums are subject
to a high degree of instability when the distances are large
compared to the sizes of the segments. For this case, separate

far field* solutions have been developed.

Equations 2.3.8 and 2.3.12 are used for computing the
mutual impedances from Zgw. For the purpose of computing Zgw,
it is appropriate to collect terms of order (n +p) together.

Writing g = n+p, and noting that

*Traditionally, far field implies a region far enough so that the
field on the receptor can be considered a constant. This is not
the implication here when the term far field is used. Instead,
far field implies a region far enough so that &/r, the ratio of

segment size to distance between the receiver and transmitter

origins is small enough that (g/r)3 is negligible compared to 1.
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o) B ) -t A [

where m' = m-n, equation 2.3.18 can be written as

1
s+ (Ag)%v a

gs .
(-1)7" (exp -jkryy,)e, T110

LW
0 1 23 sin kL_

It
[l ]

5 i i ) r. ..\ i-q : . \
x I a, (ke )t (1-(—1)1+q)[—%19] z o -
=0 g=0 Y m'=0 (m'+q m'

q q n
X io [ ] (-1) ZAZ\)(S'H“')(“"’G) ([A]’[R]) (D-]-)

When zo << Xy19- all z are of the order of

A2v (s+m') (n+a)

ZAZv(s+m')0 and the innermost summation results in the sub-

traction of almost equal guantities. Therefore, it is appropriate

and convenient to express the quantity

q -
3 [q] (-1y" kn
=0

([A],IR]) R, (D.2)

n zAZv(s+m')(n+a)

as a series in Rl and R2 [noting that Ri is of the order
Ei/rllg' Since R, is 1, the last factor contributes nothing

to the expression. However, its introduction makes it easier to
generalize the equations being developed here to wire-to-surface

and surface-to-surface equations.
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The application of the binomial theorem gives

L o

5Q
(Ry + Ryx + szz);’o = Rol’Q {1 + = [Rl + sz”

f ! 0
\
- R, L § [50-(6-1)] [’-‘-]B [R * Ry )B
0 4o | BT 5o Ro 1

(=
0™

B B-¢ € B+e
o {e] Ry Ry x

£
(D.3)

The results of equation D.3 are used for rewriting the equations
for Zb‘ in a form that is numerically rugged when f&<<r, Thus

the quantity under consideration in equation D.2 becomes

1
® 8
v s+ [ ] 0 q Bo
[ (A(x)) 0 LS*m L T L 517 n {ls(m»u)-(so-l))
0 Bo=0 €9=0 [n=0 ("§ §p=1
q n B ka- - By +€
- 0 a=B [ €0 0+€0
X ["l (-1) Lo] R, 0 Ry 070 Ry, =~ x dx (D.4)
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The quantity in the square brackets is empirically found to

be zero* for B8, < q. Thus the expression D.4 can be written,

{using B, = %—q),
Batq . ,
: 0 ' R -t €
1 Bo*a -8, - 0"%0 0
Ry I z 0 Roia By-a R, R,
Bo=0 eozo Eo
]
X Aaqeo ZAZV(S+m"Q'8'0+E0+q)0( [A]’[R]) (D's)

*
A formal proof was not attempted in this effort. However, that

[ q
the summation in expression D.2 should be of the order [rlio)
becomes obvious if one writes

q
q - n
nZo {n]‘ D7 252y (s+m*) (n+a)
1
: q
=J (rx)) % & (Re0)# [ L [g] -D® (R*x)"| ax.
0 n=0

All factors except the square brackets are of order 1. The
guantity inside the square parenthesis is, by applying the

binomial theorem in reverse,

9
3 q
(l—Rls(x)]q = [1- (l+% (R1+R2x]xJ} = {-%Rlx -%szz)

q
- [ Lo )q -y {Rl r110] X=X IRz rno] X2
r110 by s

The quantity in the second factor is of the order 1. Thus the

£ q
guantity in square brackets is of the order [ g ] .

r110




where

q 1 Bo+q
A .= ¢ [q}(-l)“ — I {s(n+a) - (50-1}] if 8%>0
@q8p n=0 (N (85 +a)! so=1 0

=0 Otherwise (D.6)

The quantity inside the summation in expression D.5 is of
2y ]36+€o

riio

ng =83 +e¢o and truncating the infinite series after ngy =2

the order { . Writing expression D.6 indexed on

2 %(g+nyp) q+ng-eg - -
R, = L . RO!"’ (@ +ng = €4)
Y]0=0 €0=0 0
n0-280 ) 2
x Ry R, Aaq(% -eo) ZA2v(s+m'+q+ng)0 (D.7)
Thus for Ly << Tya e equation D.l1 is implemented using
kv
1195 (o s+l 4 a
W _ g (-1) exp( Jkr110{ % (Ao) 110
0 o=l 23 sin k 2,
5 i i i i-q i ' '
x £ a; (ko) = [1‘-(-1)1+q] z [mflq}[m,:g](-l)m
i=0 " q=0 m'=0

q 2 no no-2¢eg
x Ry Ti10 z [ Lo ] *gm“ﬂ [q+no-eo)[R1 f110
o ne=0 T110 £0=0 €0

x Aaq(no-eo) zA2v(s+m'+no+q) 0 (D.8)




The above equation has been written so as to keep all partial

Ly - ,
110 which may vary considerably |

in the computations depending upon the geometry. Thus all

sums independent of the ratio

partial sums in the above equation are well behaved.

Computation of wire-to-surface and surface-to-wire

impedances is performed using a strategy similar to one used

for computation of wire-to-wire impedances. Equation 2.4.17a
g ‘ is written as j
-
. !5\) o

i _1,08 . s+l (,zy ] r

4 i ZWS _ g (-1) exp ( JkrOlO) Lo [AOO 010
Ot 4o1 2j sin k 2
-
5 . 5 i, i

L'f x L a; (jklo)l I aj (3ke°) [3%¥l]
- i=0 i1= 1 T T

,( i : q i-q : ' 4 '
| x I [1-(-1)”‘1) [r—‘il—"] I [ml ][m q] -1™
=0 g

q i i
x I [3] -1n" f [m}] (-n™
m1=0

X Zpoy (s4m') (n+a)e (q-n+my) (] < [R] ) (D.9

D R ok TN
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It is noted that the variable n occurs in two of the Z82
indices. This makes the application of recursion relations
B.2.2, B.2.3 and B.2.4 inconvenient as the summation is exec-

uted.* The summation is made more convenient by writing

equation D.9 to give

2 _1,08 s s+l Ty ', %v a
e = p (Th T exp(=dkrgye) &5 T (g )T Foyo
o=1 2j sin k&
g
5 o1 1 n 1 i+qy Y010,9 -qq
X L oa, (ike) I (-1) I (1-(-1) ) () !
i=0 n=0 q=n o -n-
1-q ' ' 5 5 . i
x 1 fang) [ 0™ D™ e ket
m'=0 q ml=0 i1=ml 1

Y010, %1 [11]

x | 2% ) my ZBZv(s+m')(n+a)e (Q-n+ml)

*There are two approaches to evaluating the expression D.9, The
first is to fill a 5 dimensional matrix with the appropriate values

of 2 and compute according to egquation D.9, This approach

B2.....
is attractive but would take approximately 2K of core for storing

Z and approximately 100K for storing 2

B2..... C2.......
S8

uting Z0 . Since this is too large, a second approach, that of
calculating the base values of ZB2 (and storing them) and

then using equations B.2.2, B.2.3 and B.2.4 as the summation

proceeds,must be used.
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i
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or, writing g-n+m =n, as a summation index,

1
2 _1y08 4 s+l ,zy' %V «
zgo = ¢ (B exe (ke ) &5 7 Mgo )T Tono
o=1 ..
23 sin klo

5 . i S+i-n min (5,n,)
x I a; (Gke)t I (1" 1 g 1

i=0 n=0 nl=0 m1=max(0,nl+n-i)

. _ _ r n+n,-m
x (1—(-l)l+n+nl ml) n+n1 m1 (_1)ml glo 171
n o]
i-(n'H’l -m ) : ] - ]

X 5 171 m'+nin . m +n+n1 ml (_l)m

m'=0 11 m'

5 . . s r i

i . i 010,71
X L <§§)ail(3klr) 1 [ ) ZBZv(s+m')(n+a)en
1

T 1
(D.10)

As in the wire-to~wire case, it is appropriate and convenient

to express the quantity
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in equation D.9 as a series in (;&1—) when £; <<rg,4-
010
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In the wire-to-surface case, ROO is 1.
The last factor has been included to facilitate generalization

of this development to the surface-to-surface case.

Expression
D.11 can be written
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The term inside the square brackets is recognized as expression
4

D.2 and is replaced by its equal expression D.7 to give
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or by a development process similar to that used in developing

(D.7)from (D.2),
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Thus, for 2, , %7 << To10’ ©9uation D.9  becomes

Mv 2 os
WS _ 1 s gy a (~1) s+1
Zoe = 73 exp(-3krgy0) (A57 ) Toro I sinki, %
5 . 5 N .
: 1 - i+
x I a, (szq) R (jkzr)ll I [1-(—1) q]
i=0 i\=0 q=0

i'q i [ ]
2 ) o

S
«.gi{ng-€g)
ng=0 T 10 €0=0 €0 b

Y Y
0=0 ‘o J(To10 o

Y -2€_- 2 Y
qtn -2 . 0 q+n -2 Y R,, r 0
x‘-r"no-zeo { (1] ?l l‘t ] [RIO rOlO] 0 00 11 _"0lo0
! {

4 .M +i . i -
: [ e ] k:n § [1”""“} [Rm r010]11+n1 *1
X ———
e
- n=0 rlOO cl=0 € T
X

A(a+q-2(q+no-eo))il(n1-e1) ZBZ\J (s+m'+g+ng) 0 (e+ Y°+il+n1)0

(D.15a)




It is to be noted that all partial sums in equation D.l5a are well
behaved. Similarly,
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For the surface~to-surface case, combining equations 2.5.6 and
2.5.9,
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or, similar to equation D.10,
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When Y000 is large, the innermost summations in (D.16) are

evaluated by considering the expression
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The term inside the square brackets is recognized as

expression D.11 and is replaced by its equal expression D.14

to give
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Where the limits of the summations are the same as have been

noted before. The above expression is rewritten as
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This expression is developed similar to the development of

expression D.7 to give
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Thus, for the far-field case, equation D.16 is written as
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